MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A comprehensive lattice-stability limit surface for graphene

Author(s)
Kumar, Sandeep; Parks, David Moore
Thumbnail
DownloadParks_A comprehensive.pdf (5.343Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The limits of reversible deformation in graphene under various loadings are examined using lattice-dynamical stability analysis. This information is then used to construct a comprehensive lattice-stability limit surface for graphene, which provides an analytical description of incipient lattice instabilities of all kinds, for arbitrary deformations, parametrized in terms of symmetry-invariants of strain/stress. Symmetry-invariants allow obtaining an accurate parametrization with a minimal number of coefficients. Based on this limit surface, we deduce a general continuum criterion for the onset of all kinds of lattice-stabilities in graphene: an instability appears when the magnitude of the deviatoric strain γ reaches a critical value γ c which depends upon the mean normal strain E¯ and the directionality θ of the principal deviatoric stretch with respect to reference lattice orientation. We also distinguish between the distinct regions of the limit surface that correspond to fundamentally different mechanisms of lattice instabilities in graphene, such as structural versus material instabilities, and long-wave (elastic) versus short-wave instabilities. Utility of this limit surface is demonstrated in assessment of incipient failures in defect-free graphene via its implementation in a continuum finite elements analysis (FEA). The resulting scheme enables on-the-fly assessments of not only the macroscopic conditions (e.g., load and deflection) but also the microscopic conditions (e.g., local stress/strain, spatial location, temporal proximity, and nature of incipient lattice instability) at which an instability occurs in a defect-free graphene sheet subjected to an arbitrary loading condition. Keywords Graphene Ideal strength Lattice-stability limits Finite element analysis
Date issued
2015-10
URI
http://hdl.handle.net/1721.1/113221
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of the Mechanics and Physics of Solids
Publisher
Elsevier
Citation
Kumar, Sandeep, and Parks, David M. “A Comprehensive Lattice-Stability Limit Surface for Graphene.” Journal of the Mechanics and Physics of Solids 86 (January 2016): 19–41 © 2015 Elsevier Ltd
Version: Original manuscript
ISSN
0022-5096

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.