Show simple item record

dc.contributor.authorPickard, Galen
dc.contributor.authorFrank, Morgan Ryan
dc.contributor.authorCebrian, Manuel
dc.contributor.authorRahwan, Iyad
dc.date.accessioned2018-01-22T20:31:10Z
dc.date.available2018-01-22T20:31:10Z
dc.date.issued2017-05
dc.date.submitted2016-11
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/1721.1/113265
dc.description.abstractThis is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Bayesian truth serum (BTS) is an exciting new method for improving honesty and information quality in multiple-choice survey, but, despite the method's mathematical reliance on large sample sizes, existing literature about BTS only focuses on small experiments. Combined with the prevalence of online survey platforms, such as Amazon's Mechanical Turk, which facilitate surveys with hundreds or thousands of participants, BTS must be effective in large-scale experiments for BTS to become a readily accepted tool in real-world applications. We demonstrate that BTS quantifiably improves honesty in large-scale online surveys where the "honest" distribution of answers is known in expectation on aggregate. Furthermore, we explore a marketing application where "honest" answers cannot be known, but find that BTS treatment impacts the resulting distributions of answers.en_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/JOURNAL.PONE.0177385en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0en_US
dc.sourcePLoSen_US
dc.titleValidating Bayesian truth serum in large-scale online human experimentsen_US
dc.typeArticleen_US
dc.identifier.citationFrank, Morgan R. et al. “Validating Bayesian Truth Serum in Large-Scale Online Human Experiments.” Edited by Chuhsing Kate Hsiao. PLOS ONE 12, 5 (May 2017): e0177385 © 2017 Frank et alen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.mitauthorFrank, Morgan Ryan
dc.contributor.mitauthorCebrian, Manuel
dc.contributor.mitauthorRahwan, Iyad
dc.relation.journalPLOS ONEen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-01-19T18:52:11Z
dspace.orderedauthorsFrank, Morgan R.; Cebrian, Manuel; Pickard, Galen; Rahwan, Iyaden_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9487-9359
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record