Show simple item record

dc.contributor.authorChandrasekaran, Sriram
dc.contributor.authorZhang, Jin
dc.contributor.authorSun, Zhen
dc.contributor.authorZhang, Li
dc.contributor.authorRoss, Christian A.
dc.contributor.authorHuang, Yu-Chung
dc.contributor.authorAsara, John M.
dc.contributor.authorLi, Hu
dc.contributor.authorDaley, George Q.
dc.contributor.authorCollins, James J.
dc.date.accessioned2018-01-23T15:33:20Z
dc.date.available2018-01-23T15:33:20Z
dc.date.issued2017-12
dc.date.submitted2017-05
dc.identifier.issn2211-1247
dc.identifier.urihttp://hdl.handle.net/1721.1/113270
dc.description.abstractMetabolism is an emerging stem cell hallmark tied to cell fate, pluripotency, and self-renewal, yet systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale network models. Here, we develop a systems approach to integrate time-course metabolomics data with a computational model of metabolism to analyze the metabolic state of naive and primed murine pluripotent stem cells. Using this approach, we find that one-carbon metabolism involving phosphoglycerate dehydrogenase, folate synthesis, and nucleotide synthesis is a key pathway that differs between the two states, resulting in differential sensitivity to anti-folates. The model also predicts that the pluripotency factor Lin28 regulates this one-carbon metabolic pathway, which we validate using metabolomics data from Lin28-deficient cells. Moreover, we identify and validate metabolic reactions related to S-adenosyl-methionine production that can differentially impact histone methylation in naive and primed cells. Our network-based approach provides a framework for characterizing metabolic changes influencing pluripotency and cell fate. Chandrasekaran et al. use computational modeling, metabolomics, and metabolic inhibitors to discover metabolic differences between various pluripotent stem cell states and infer their impact on stem cell fate decisions. Keywords: systems biology; stem cell biology; metabolism; genome-scale modeling; pluripotency; histone methylation; naive (ground) state; primed state; cell fate; metabolic networken_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.celrep.2017.07.048en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0en_US
dc.sourceCell Reportsen_US
dc.titleComprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modelingen_US
dc.typeArticleen_US
dc.identifier.citationChandrasekaran, Sriram et al. “Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling.” Cell Reports 21, 10 (December 2017): 2965–2977 © 2017 The Authorsen_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.contributor.mitauthorChandrasekaran, Sriram
dc.contributor.mitauthorCollins, James J.
dc.relation.journalCell Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-01-19T19:07:34Z
dspace.orderedauthorsChandrasekaran, Sriram; Zhang, Jin; Sun, Zhen; Zhang, Li; Ross, Christian A.; Huang, Yu-Chung; Asara, John M.; Li, Hu; Daley, George Q.; Collins, James J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6897-2135
dc.identifier.orcidhttps://orcid.org/0000-0002-5560-8246
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record