MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biosilica-Entrapped Enzymes Studied by Using Dynamic Nuclear-Polarization-Enhanced High-Field NMR Spectroscopy

Author(s)
Ravera, Enrico; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Michaelis, Vladimir K.; Ong, Ta-Chung; Keeler, Eric George; Griffin, Robert Guy; ... Show more Show less
Thumbnail
Downloadnihms736973.pdf (278.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Enzymes are used as environmentally friendly catalysts in many industrial applications, and are frequently immobilized in a matrix to improve their chemical stability for long-term storage and reusability. Recently, it was shown that an atomic-level description of proteins immobilized in a biosilica matrix can be attained by examining their magic-angle spinning (MAS) NMR spectra. However, even though MAS NMR is an excellent tool for determining structure, it is severely hampered by sensitivity. In this work we provide the proof of principle that NMR characterization of biosilica-entrapped enzymes could be assisted by high-field dynamic nuclear polariza tion (DNP). A closer look at entrapped enzymes: Enzymes entrapped in bioinspired materials are gaining traction in green applications, and solid-state NMR promises to be the technique to study them at atomic detail. However, sensitivity is usually limited. Dynamic nuclear polarization can be applied to increase sensitivity and assess the preservation of the enzyme fold.
Date issued
2015-09
URI
http://hdl.handle.net/1721.1/113315
Department
Massachusetts Institute of Technology. Department of Chemistry; Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)
Journal
ChemPhysChem
Publisher
Wiley Blackwell
Citation
Ravera, Enrico et al. “Biosilica-Entrapped Enzymes Studied by Using Dynamic Nuclear-Polarization-Enhanced High-Field NMR Spectroscopy.” ChemPhysChem 16, 13 (August 2015): 2751–2754 © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Version: Author's final manuscript
ISSN
1439-4235
1439-7641

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.