Show simple item record

dc.contributor.authorJin, Chenglu
dc.contributor.authorNguyen, Phuong Ha
dc.contributor.authorFuller, Benjamin
dc.contributor.authorvan Dijk, Marten
dc.contributor.authorNguyen, Phuong
dc.contributor.authorHerder, Charles Henry
dc.contributor.authorDevadas, Srinivas
dc.contributor.authorRen, Ling
dc.date.accessioned2018-01-29T20:04:52Z
dc.date.available2018-01-29T20:04:52Z
dc.date.issued2017-12
dc.date.submitted2017-11
dc.identifier.issn2410-387X
dc.identifier.urihttp://hdl.handle.net/1721.1/113338
dc.description.abstractHerder et al. (IEEE Transactions on Dependable and Secure Computing, 2017) designed a new computational fuzzy extractor and physical unclonable function (PUF) challenge-response protocol based on the Learning Parity with Noise (LPN) problem. The protocol requires no irreversible state updates on the PUFs for security, like burning irreversible fuses, and can correct for significant measurement noise when compared to PUFs using a conventional (information theoretical secure) fuzzy extractor. However, Herder et al. did not implement their protocol. In this paper, we give the first implementation of a challenge response protocol based on computational fuzzy extractors. Our main insight is that “confidence information” does not need to be kept private, if the noise vector is independent of the confidence information, e.g., the bits generated by ring oscillator pairs which are physically placed close to each other. This leads to a construction which is a simplified version of the design of Herder et al. (also building on a ring oscillator PUF). Our simplifications allow for a dramatic reduction in area by making a mild security assumption on ring oscillator physical obfuscated key output bits. Keywords: physical unclonable function; learning parity with noise; fuzzy extractoren_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CNS-1617774)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Award FA9550-14-1-0351)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CNS-1523572)en_US
dc.publisherMDPI AGen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/cryptography1030023en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleFPGA Implementation of a Cryptographically-Secure PUF Based on Learning Parity with Noiseen_US
dc.typeArticleen_US
dc.identifier.citationJin, Chenglu et al. "FPGA Implementation of a Cryptographically-Secure PUF Based on Learning Parity with Noise." Cryptography 1,3 (2017 December): 23 © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorHerder, Charles Henry
dc.contributor.mitauthorDevadas, Srinivas
dc.contributor.mitauthorRen, Ling
dc.relation.journalCryptographyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-01-24T21:04:22Z
dspace.orderedauthorsJin, Chenglu; Herder, Charles; Ren, Ling; Nguyen, Phuong; Fuller, Benjamin; Devadas, Srinivas; van Dijk, Martenen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1117-7293
dc.identifier.orcidhttps://orcid.org/0000-0001-8253-7714
dc.identifier.orcidhttps://orcid.org/0000-0003-3437-7570
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record