Show simple item record

dc.contributor.authorEisele, Dörthe M.
dc.contributor.authorCaram, Justin R
dc.contributor.authorDoria, Sandra
dc.contributor.authorFreyria, Francesca
dc.contributor.authorSinclair, Timothy Scott
dc.contributor.authorBawendi, Moungi G
dc.contributor.authorRebentrost, Frank
dc.contributor.authorLloyd, Seth
dc.date.accessioned2018-01-30T15:58:02Z
dc.date.available2018-01-30T15:58:02Z
dc.date.issued2016-09
dc.date.submitted2016-06
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttp://hdl.handle.net/1721.1/113346
dc.description.abstractWe report 1.6 ± 1 μm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton–exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm2/s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm2/s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport. Keywords: coherent exciton; exciton; exciton delocalization; exciton diffusion; J-aggregate; molecular aggregateen_US
dc.description.sponsorshipEni-MIT Solar Frontiers Centeren_US
dc.description.sponsorshipUnited States. Department of Energy. Center for Excitonics (Grant DE-SC0001088)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.nanolett.6b02529en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceOther univ. web domainen_US
dc.titleRoom-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregateen_US
dc.typeArticleen_US
dc.identifier.citationCaram, Justin R., et al. “Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate.” Nano Letters, vol. 16, no. 11, Nov. 2016, pp. 6808–15. © 2016 American Chemical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorCaram, Justin R
dc.contributor.mitauthorDoria, Sandra
dc.contributor.mitauthorFreyria, Francesca
dc.contributor.mitauthorSinclair, Timothy Scott
dc.contributor.mitauthorBawendi, Moungi G
dc.contributor.mitauthorRebentrost, Frank
dc.contributor.mitauthorLloyd, Seth
dc.relation.journalNano Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCaram, Justin R.; Doria, Sandra; Eisele, Dörthe M.; Freyria, Francesca S.; Sinclair, Timothy S.; Rebentrost, Patrick; Lloyd, Seth; Bawendi, Moungi G.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1192-4746
dc.identifier.orcidhttps://orcid.org/0000-0002-2710-5545
dc.identifier.orcidhttps://orcid.org/0000-0002-9371-6109
dc.identifier.orcidhttps://orcid.org/0000-0003-2220-4365
dc.identifier.orcidhttps://orcid.org/0000-0002-6728-8163
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record