MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pileup Mitigation with Machine Learning (PUMML)

Author(s)
Nachman, Benjamin; Schwartz, Matthew D.; Komiske, Patrick T.; Metodiev, Eric Mario
Thumbnail
Download13130_2017_Article_7248.pdf (1.090Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Pileup involves the contamination of the energy distribution arising from the primary collision of interest (leading vertex) by radiation from soft collisions (pileup). We develop a new technique for removing this contamination using machine learning and convolutional neural networks. The network takes as input the energy distribution of charged leading vertex particles, charged pileup particles, and all neutral particles and outputs the energy distribution of particles coming from leading vertex alone. The PUMML algorithm performs remarkably well at eliminating pileup distortion on a wide range of simple and complex jet observables. We test the robustness of the algorithm in a number of ways and discuss how the network can be trained directly on data. Keywords: Jets.
Date issued
2017-12
URI
http://hdl.handle.net/1721.1/113351
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Journal of High Energy Physics
Publisher
Springer Berlin Heidelberg
Citation
Komiske, Patrick T., et al. “Pileup Mitigation with Machine Learning (PUMML).” Journal of High Energy Physics, vol. 2017, no. 12, Dec. 2017.
Version: Final published version
ISSN
1029-8479
1126-6708

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.