Show simple item record

dc.contributor.authorLi, Shiyu
dc.contributor.authorChung, Ping Ngai
dc.date.accessioned2018-01-30T19:58:30Z
dc.date.available2018-01-30T19:58:30Z
dc.date.issued2014-03
dc.date.submitted2014-02
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/1721.1/113354
dc.description.abstractIn their breakthrough paper in 2006, Goldston, Graham, Pintz and Yıldırım proved several results about bounded gaps between products of two distinct primes. Frank Thorne expanded on this result, proving bounded gaps in the set of square-free numbers with r prime factors for any r ≥ 2, all of which are in a given set of primes. His results yield applications to the divisibility of class numbers and the triviality of ranks of elliptic curves. In this paper, we relax the condition on the number of prime factors and prove an analogous result using a modified approach. We then revisit Thorne’s applications and give a better bound in each case. Keywords: bounded prime gaps; square-free numbers; modular elliptic curvesen_US
dc.publisherMDPI AGen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/math2010037en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleBounded Gaps between Products of Special Primesen_US
dc.typeArticleen_US
dc.identifier.citationChung, Ping and Li, Shiyu. "Bounded Gaps between Products of Special Primes." Mathematics 2, 1 (March 2014): 37-52 © 2014 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorChung, Ping Ngai
dc.relation.journalMathematicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-01-24T21:04:58Z
dspace.orderedauthorsChung, Ping; Li, Shiyuen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record