MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

Author(s)
Jia, Gengjie; Stephanopoulos, Gregory; Gunawan, Rudiyanto
Thumbnail
Downloadmetabolites-02-00891-v2.pdf (558.2Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA) kinetics. Keywords: ensemble modeling; incremental identification; dynamic flux estimation; independent parameter set; generalized mass action model
Date issued
2012-11
URI
http://hdl.handle.net/1721.1/113357
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Metabolites
Publisher
MDPI AG
Citation
Jia, Gengjie et al. "Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles." Metabolites 2, 4 (November 2014): 891-912 © 2014 The Author(s)
Version: Final published version
ISSN
2218-1989

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.