MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Melting Can Hinder Impact-Induced Adhesion

Author(s)
Hassani Gangaraj, Seyyed Mostafa; Veysset, David Georges; Nelson, Keith Adam; Schuh, Christopher A
Thumbnail
DownloadPhysRevLett.119.175701.pdf (1.684Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Melting has long been used to join metallic materials, from welding to selective laser melting in additive manufacturing. In the same school of thought, localized melting has been generally perceived as an advantage, if not the main mechanism, for the adhesion of metallic microparticles to substrates during a supersonic impact. Here, we conduct the first in situ supersonic impact observations of individual metallic microparticles aimed at the explicit study of melting effects. Counterintuitively, we find that under at least some conditions melting is disadvantageous and hinders impact-induced adhesion. In the parameter space explored, i.e., ∼10 μm particle size and ∼1 km/s particle velocity, we argue that the solidification time is much longer than the residence time of the particle on the substrate, so that resolidification cannot be a significant factor in adhesion.
Date issued
2017-10
URI
http://hdl.handle.net/1721.1/113381
Department
Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies; Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Hassani-Gangaraj, Mostafa et al. “Melting Can Hinder Impact-Induced Adhesion.” Physical Review Letters 119, 17 (October 2017) © 2017 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.