dc.contributor.author | Chiloyan, Vazrik | |
dc.contributor.author | Zeng, Lingping | |
dc.contributor.author | Huberman, Samuel C. | |
dc.contributor.author | Maznev, Alexei | |
dc.contributor.author | Nelson, Keith Adam | |
dc.contributor.author | Chen, Gang | |
dc.date.accessioned | 2018-02-02T14:23:36Z | |
dc.date.available | 2018-02-02T14:23:36Z | |
dc.date.issued | 2016-07 | |
dc.date.submitted | 2016-05 | |
dc.identifier.issn | 0021-8979 | |
dc.identifier.issn | 1089-7550 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/113390 | |
dc.description.abstract | The phonon Boltzmann transport equation (BTE) is widely utilized to study non-diffusive thermal transport. We find a solution of the BTE in the thin film transient thermal grating (TTG) experimental geometry by using a recently developed variational approach with a trial solution supplied by the Fourier heat conduction equation. We obtain an analytical expression for the thermal decay rate that shows excellent agreement with Monte Carlo simulations. We also obtain a closed form expression for the effective thermal conductivity that demonstrates the full material property and heat transfer geometry dependence, and recovers the limits of the one-dimensional TTG expression for very thick films and the Fuchs-Sondheimer expression for very large grating spacings. The results demonstrate the utility of the variational technique for analyzing non-diffusive phonon-mediated heat transport for nanostructures in multi-dimensional transport geometries, and will assist the probing of the mean free path distribution of materials via transient grating experiments. | en_US |
dc.publisher | American Institute of Physics (AIP) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1063/1.4955164 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Variational approach to solving the spectral Boltzmann transport equation in transient thermal grating for thin films | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Chiloyan, Vazrik et al. “Variational Approach to Solving the Spectral Boltzmann Transport Equation in Transient Thermal Grating for Thin Films.” Journal of Applied Physics 120, 2 (July 2016): 025103 © 2016 Author(s) | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemistry | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.mitauthor | Chiloyan, Vazrik | |
dc.contributor.mitauthor | Zeng, Lingping | |
dc.contributor.mitauthor | Huberman, Samuel C. | |
dc.contributor.mitauthor | Maznev, Alexei | |
dc.contributor.mitauthor | Nelson, Keith Adam | |
dc.contributor.mitauthor | Chen, Gang | |
dc.relation.journal | Journal of Applied Physics | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2018-01-31T15:53:33Z | |
dspace.orderedauthors | Chiloyan, Vazrik; Zeng, Lingping; Huberman, Samuel; Maznev, Alexei A.; Nelson, Keith A.; Chen, Gang | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-2145-0890 | |
dc.identifier.orcid | https://orcid.org/0000-0001-8051-5378 | |
dc.identifier.orcid | https://orcid.org/0000-0003-0865-8096 | |
dc.identifier.orcid | https://orcid.org/0000-0001-7804-5418 | |
dc.identifier.orcid | https://orcid.org/0000-0002-3968-8530 | |
mit.license | OPEN_ACCESS_POLICY | en_US |