Show simple item record

dc.contributor.authorMatveev, Alexander
dc.contributor.authorMeirovitch, Yaron
dc.contributor.authorSaribekyan, Hayk
dc.contributor.authorJakubiuk, Wiktor B.
dc.contributor.authorKaler, Timothy
dc.contributor.authorOdor, Gergely
dc.contributor.authorBudden, David
dc.contributor.authorZlateski, Aleksandar
dc.contributor.authorShavit, Nir N.
dc.date.accessioned2018-02-02T17:48:09Z
dc.date.available2018-02-02T17:48:09Z
dc.date.issued2017-02
dc.identifier.isbn9781450344937
dc.identifier.urihttp://hdl.handle.net/1721.1/113396
dc.description.abstractThe current design trend in large scale machine learning is to use distributed clusters of CPUs and GPUs with MapReduce-style programming. Some have been led to believe that this type of horizontal scaling can reduce or even eliminate the need for traditional algorithm development, careful parallelization, and performance engineering. This paper is a case study showing the contrary: that the benefits of algorithms, parallelization, and performance engineering, can sometimes be so vast that it is possible to solve "cluster-scale" problems on a single commodity multicore machine. Connectomics is an emerging area of neurobiology that uses cutting edge machine learning and image processing to extract brain connectivity graphs from electron microscopy images. It has long been assumed that the processing of connectomics data will require mass storage, farms of CPU/GPUs, and will take months (if not years) of processing time. We present a high-throughput connectomics-on-demand system that runs on a multicore machine with less than 100 cores and extracts connectomes at the terabyte per hour pace of modern electron microscopes.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant IIS-1447786)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant CCF1563880)en_US
dc.description.sponsorshipUnited States. Intelligence Advanced Research Projects Activity (grant 138076-5093555)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/3018743.3018766en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleA Multicore Path to Connectomics-on-Demanden_US
dc.typeArticleen_US
dc.identifier.citationMatveev, Alexander, Yaron Meirovitch, Hayk Saribekyan, Wiktor Jakubiuk, Tim Kaler, Gergely Odor, David Budden, Aleksandar Zlateski, and Nir Shavit. “A Multicore Path to Connectomics-on-Demand.” Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming - PPoPP ’17 (2017).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorMatveev, Alexander
dc.contributor.mitauthorMeirovitch, Yaron
dc.contributor.mitauthorSaribekyan, Hayk
dc.contributor.mitauthorJakubiuk, Wiktor B.
dc.contributor.mitauthorKaler, Timothy
dc.contributor.mitauthorOdor, Gergely
dc.contributor.mitauthorBudden, David
dc.contributor.mitauthorZlateski, Aleksandar
dc.contributor.mitauthorShavit, Nir N.
dc.relation.journalProceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming - PPoPP '17en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMatveev, Alexander; Meirovitch, Yaron; Saribekyan, Hayk; Jakubiuk, Wiktor; Kaler, Tim; Odor, Gergely; Budden, David; Zlateski, Aleksandar; Shavit, Niren_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4235-0036
dc.identifier.orcidhttps://orcid.org/0000-0002-1946-8012
dc.identifier.orcidhttps://orcid.org/0000-0002-1266-5742
dc.identifier.orcidhttps://orcid.org/0000-0002-3831-8255
dc.identifier.orcidhttps://orcid.org/0000-0001-5901-7964
dc.identifier.orcidhttps://orcid.org/0000-0002-4552-2414
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record