Show simple item record

dc.contributor.authorAmberg-Johnson, Katherine
dc.contributor.authorGanesan, Suresh M.
dc.contributor.authorLorenzi, Hernan A.
dc.contributor.authorNiles, Jacquin C.
dc.contributor.authorYeh, Ellen
dc.contributor.authorHari, Sanjay B.
dc.contributor.authorSauer, Robert T.
dc.date.accessioned2018-02-09T17:16:50Z
dc.date.available2018-02-09T17:16:50Z
dc.date.issued2017-08
dc.date.submitted2017-06
dc.identifier.issn2050-084X
dc.identifier.urihttp://hdl.handle.net/1721.1/113561
dc.description.abstractThe malaria parasite Plasmodium falciparum and related apicomplexan pathogens contain an essential plastid organelle, the apicoplast, which is a key anti-parasitic target. Derived from secondary endosymbiosis, the apicoplast depends on novel, but largely cryptic, mechanisms for protein/lipid import and organelle inheritance during parasite replication. These critical biogenesis pathways present untapped opportunities to discover new parasite-specific drug targets. We used an innovative screen to identify actinonin as having a novel mechanism-of-action inhibiting apicoplast biogenesis. Resistant mutation, chemical-genetic interaction, and biochemical inhibition demonstrate that the unexpected target of actinonin in P. falciparum and Toxoplasma gondii is FtsH1, a homolog of a bacterial membrane AAA+ metalloprotease. PfFtsH1 is the first novel factor required for apicoplast biogenesis identified in a phenotypic screen. Our findings demonstrate that FtsH1 is a novel and, importantly, druggable antimalarial target. Development of FtsH1 inhibitors will have significant advantages with improved drug kinetics and multistage efficacy against multiple human parasites.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Award AI016892)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Award F32GM116241)en_US
dc.publishereLife Sciences Publications, Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.7554/ELIFE.29865en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceeLifeen_US
dc.titleSmall molecule inhibition of apicomplexan FtsH1 disrupts plastid biogenesis in human pathogensen_US
dc.typeArticleen_US
dc.identifier.citationAmberg-Johnson,et al. “Small Molecule Inhibition of Apicomplexan FtsH1 Disrupts Plastid Biogenesis in Human Pathogens.” eLife 2017, 6 (August 2017): e29865 © Amberg-Johnson et alen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.mitauthorHari, Sanjay B.
dc.contributor.mitauthorSauer, Robert T.
dc.relation.journaleLifeen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-02-02T19:08:02Z
dspace.orderedauthorsAmberg-Johnson, Katherine; Hari, Sanjay B; Ganesan, Suresh M; Lorenzi, Hernan A; Sauer, Robert T; Niles, Jacquin C; Yeh, Ellenen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0606-9896
dc.identifier.orcidhttps://orcid.org/0000-0002-1719-5399
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record