Show simple item record

dc.contributor.authorBandaru, Pradeep
dc.contributor.authorShah, Neel H
dc.contributor.authorBhattacharyya, Moitrayee
dc.contributor.authorBarton, John P
dc.contributor.authorKondo, Yasushi
dc.contributor.authorCofsky, Joshua C
dc.contributor.authorGee, Christine L
dc.contributor.authorChakraborty, Arup K
dc.contributor.authorKortemme, Tanja
dc.contributor.authorRanganathan, Rama
dc.contributor.authorKuriyan, John
dc.date.accessioned2018-02-12T15:18:45Z
dc.date.available2018-02-12T15:18:45Z
dc.date.issued2017-07
dc.date.submitted2017-04
dc.identifier.issn2050-084X
dc.identifier.urihttp://hdl.handle.net/1721.1/113564
dc.description.abstractRas proteins are highly conserved signaling molecules that exhibit regulated, nucleotide-dependent switching between active and inactive states. The high conservation of Ras requires mechanistic explanation, especially given the general mutational tolerance of proteins. Here, we use deep mutational scanning, biochemical analysis and molecular simulations to understand constraints on Ras sequence. Ras exhibits global sensitivity to mutation when regulated by a GTPase activating protein and a nucleotide exchange factor. Removing the regulators shifts the distribution of mutational effects to be largely neutral, and reveals hotspots of activating mutations in residues that restrain Ras dynamics and promote the inactive state. Evolutionary analysis, combined with structural and mutational data, argue that Ras has co-evolved with its regulators in the vertebrate lineage. Overall, our results show that sequence conservation in Ras depends strongly on the biochemical network in which it operates, providing a framework for understanding the origin of global selection pressures on proteins.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant PO1 AI091580)en_US
dc.publishereLife Sciences Publications, Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.7554/ELIFE.27810en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceeLifeen_US
dc.titleDeconstruction of the Ras switching cycle through saturation mutagenesisen_US
dc.typeArticleen_US
dc.identifier.citationBandaru, Pradeep et al. “Deconstruction of the Ras Switching Cycle through Saturation Mutagenesis.” eLife 2017, 6 (July 2017): e27810 © Bandaru et alen_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorBarton, John P
dc.contributor.mitauthorChakraborty, Arup K
dc.relation.journaleLifeen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-02-02T18:51:09Z
dspace.orderedauthorsBandaru, Pradeep; Shah, Neel H; Bhattacharyya, Moitrayee; Barton, John P; Kondo, Yasushi; Cofsky, Joshua C; Gee, Christine L; Chakraborty, Arup K; Kortemme, Tanja; Ranganathan, Rama; Kuriyan, Johnen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1467-421X
dc.identifier.orcidhttps://orcid.org/0000-0003-1268-9602
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record