Show simple item record

dc.contributor.authorMiller, Callie J.
dc.contributor.authorErmentrout, Bard
dc.contributor.authorDavidson, Lance A.
dc.contributor.authorChanet, Soline
dc.contributor.authorVaishnav, Eeshit Dhaval
dc.contributor.authorMartin, Adam C
dc.date.accessioned2018-02-12T15:32:48Z
dc.date.available2018-02-12T15:32:48Z
dc.date.issued2017-05
dc.date.submitted2016-09
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/113567
dc.description.abstractSculpting organism shape requires that cells produce forces with proper directionality. Thus, it is critical to understand how cells orient the cytoskeleton to produce forces that deform tissues. During Drosophila gastrulation, actomyosin contraction in ventral cells generates a long, narrow epithelial furrow, termed the ventral furrow, in which actomyosin fibres and tension are directed along the length of the furrow. Using a combination of genetic and mechanical perturbations that alter tissue shape, we demonstrate that geometrical and mechanical constraints act as cues to orient the cytoskeleton and tension during ventral furrow formation. We developed an in silico model of two-dimensional actomyosin meshwork contraction, demonstrating that actomyosin meshworks exhibit an inherent force orienting mechanism in response to mechanical constraints. Together, our in vivo and in silico data provide a framework for understanding how cells orient force generation, establishing a role for geometrical and mechanical patterning of force production in tissues.en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (Grant R01GM105984)en_US
dc.description.sponsorshipAmerican Heart Association (Grant 14GRNT18880059)en_US
dc.description.sponsorshipEuropean Molecular Biology Organization (Grant ALTF 1082-2012)en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/NCOMMS15014en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Communicationsen_US
dc.titleActomyosin meshwork mechanosensing enables tissue shape to orient cell forceen_US
dc.typeArticleen_US
dc.identifier.citationChanet, Soline et al. “Actomyosin Meshwork Mechanosensing Enables Tissue Shape to Orient Cell Force.” Nature Communications 8 (May 2017): 15014 © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.mitauthorChanet, Soline
dc.contributor.mitauthorVaishnav, Eeshit Dhaval
dc.contributor.mitauthorMartin, Adam C
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-02-02T19:36:34Z
dspace.orderedauthorsChanet, Soline; Miller, Callie J.; Vaishnav, Eeshit Dhaval; Ermentrout, Bard; Davidson, Lance A.; Martin, Adam C.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9434-0628
dc.identifier.orcidhttps://orcid.org/0000-0001-8060-2607
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record