MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular dynamics and charge transport in organic semiconductors: a classical approach to modeling electron transfer

Author(s)
Pelzer, Kenley M.; Vázquez-Mayagoitia, Álvaro; Ratcliff, Laura E.; Tretiak, Sergei; Bair, Raymond A.; Gray, Stephen K.; Larsen, Ross E.; Darling, Seth B.; Van Voorhis, Troy; ... Show more Show less
Thumbnail
Downloadc6sc04547b.pdf (1.343Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial 3.0 Unported https://creativecommons.org/licenses/by-nc/3.0/
Metadata
Show full item record
Abstract
Organic photovoltaics (OPVs) are a promising carbon-neutral energy conversion technology, with recent improvements pushing power conversion efficiencies over 10%. A major factor limiting OPV performance is inefficiency of charge transport in organic semiconducting materials (OSCs). Due to strong coupling with lattice degrees of freedom, the charges form polarons, localized quasi-particles comprised of charges dressed with phonons. These polarons can be conceptualized as pseudo-atoms with a greater effective mass than a bare charge. We propose that due to this increased mass, polarons can be modeled with Langevin molecular dynamics (LMD), a classical approach with a computational cost much lower than most quantum mechanical methods. Here we present LMD simulations of charge transfer between a pair of fullerene molecules, which commonly serve as electron acceptors in OSCs. We find transfer rates consistent with experimental measurements of charge mobility, suggesting that this method may provide quantitative predictions of efficiency when used to simulate materials on the device scale. Our approach also offers information that is not captured in the overall transfer rate or mobility: in the simulation data, we observe exactly when and why intermolecular transfer events occur. In addition, we demonstrate that these simulations can shed light on the properties of polarons in OSCs. Much remains to be learned about these quasi-particles, and there are no widely accepted methods for calculating properties such as effective mass and friction. Our model offers a promising approach to exploring mass and friction as well as providing insight into the details of polaron transport in OSCs.
Date issued
2017-01
URI
http://hdl.handle.net/1721.1/113628
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Chemical Science
Publisher
Royal Society of Chemistry (RSC)
Citation
Pelzer, Kenley M. et al. “Molecular Dynamics and Charge Transport in Organic Semiconductors: a Classical Approach to Modeling Electron Transfer.” Chemical Science 8, 4 (2017): 2597–2609 © The Royal Society of Chemistry
Version: Final published version
ISSN
2041-6520
2041-6539

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.