MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermally-drawn fibers with spatially-selective porous domains

Author(s)
Grena, Benjamin Jean-Baptiste; Alayrac, Jean-Baptiste; Levy, Etgar Claude; Stolyarov, Alexander M.; Joannopoulos, John; Fink, Yoel; ... Show more Show less
Thumbnail
Downloads41467-017-00375-0.pdf (2.228Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The control of mass transport using porous fibers is ubiquitous, with applications ranging from filtration to catalysis. Yet, to date, porous fibers have been made of single materials in simple geometries, with limited function. Here we report the fabrication and characterization of thermally drawn multimaterial fibers encompassing internal porous domains alongside non-porous insulating and conductive materials, in highly controlled device geometries. Our approach utilizes phase separation of a polymer solution during the preform-to-fiber drawing process, generating porosity as the fiber is drawn. Engineering the preform structure grants control over the geometry and materials architecture of the final porous fibers. Electrical conductivity of the selectrolyte-filled porous domains is substantiated through ionic conductivity measurements using electrodes thermally drawn in the cross-section. Pore size tunability between 500 nm-10 μm is established by regulating the phase separation kinetics. We further demonstrate capillary breakup of cylindrical porous structures porous microspheres within the fiber core.
Date issued
2017-08
URI
http://hdl.handle.net/1721.1/113629
Department
Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies; Lincoln Laboratory; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Nature Communications
Publisher
Nature Publishing Group
Citation
Grena, Benjamin et al. “Thermally-Drawn Fibers with Spatially-Selective Porous Domains.” Nature Communications 8, 1 (August 2017): 364 © 2017 The Author(s)
Version: Final published version
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.