The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector
Author(s)
Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Convery, M.; Crespo-Anadón, J. I; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A; Fleming, B. T; Foreman, W.; Furmanski, A. P; Garcia-Gamez, D.; Garvey, G. T; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R; Lockwitz, S.; Lorca, D.; Louis, W. C; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A; Meddage, V.; Miceli, T.; Mills, G. B; Mooney, M.; Moore, C. D; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W; Schukraft, A.; Seligman, W.; Shaevitz, M. H; Sinclair, J.; Smith, A.; Snider, E. L; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G; Viren, B.; Weber, M.; Wickremasinghe, D. A; Wolbers, S.; Woodruff, K.; Yang, T.; Zeller, G. P; Zennamo, J.; Zhang, C.; Collin, G. H.; Conrad, Janet Marie; Hen, Or; Hourlier, Adrien C.; Moon, J.; Wongjirad, Taritree; Yates, Lauren Elizabeth; ... Show more Show less
Download10052_2017_Article_5481.pdf (1.382Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.
Date issued
2018-01Department
Massachusetts Institute of Technology. Department of PhysicsJournal
The European Physical Journal C
Publisher
Springer Berlin Heidelberg
Citation
Acciarri, R., et al. “The Pandora Multi-Algorithm Approach to Automated Pattern Recognition of Cosmic-Ray Muon and Neutrino Events in the MicroBooNE Detector.” The European Physical Journal C, vol. 78, no. 1, Jan. 2018.
Version: Final published version
ISSN
1434-6044
1434-6052