Show simple item record

dc.contributor.authorGrant, Elyot
dc.contributor.authorHegde, Chinmay
dc.contributor.authorIndyk, Piotr
dc.date.accessioned2018-02-14T20:36:21Z
dc.date.available2018-02-14T20:36:21Z
dc.date.issued2014-02
dc.date.submitted2013-12
dc.identifier.isbn978-1-4799-0248-4
dc.identifier.urihttp://hdl.handle.net/1721.1/113673
dc.description.abstractWe propose algorithms for constructing linear embeddings of a finite dataset V ⊂ ℝ[superscript d] into a k-dimensional subspace with provable, nearly optimal distortions. First, we propose an exhaustive-search-based algorithm that yields a k-dimensional linear embedding with distortion at most ε[subscript opt](k)+δ, for any δ > 0 where ε[subscript opt](k) is the smallest achievable distortion over all possible orthonormal embeddings. This algorithm is space-efficient and can be achieved by a single pass over the data V. However, the runtime of this algorithm is exponential in k. Second, we propose a convex-programming-based algorithm that yields an O(k/δ)-dimensional orthonormal embedding with distortion at most (1 + δ)ε[subscript opt](k). The runtime of this algorithm is polynomial in d and independent of k. Several experiments demonstrate the benefits of our approach over conventional linear embedding techniques, such as principal components analysis (PCA) or random projections.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_US
dc.description.sponsorshipCenter for Massive Data Algorithmics (MADALGO)en_US
dc.description.sponsorshipDavid & Lucile Packard Foundationen_US
dc.description.sponsorshipMITEI-Shell Programen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/GlobalSIP.2013.6737055en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleNearly optimal linear embeddings into very low dimensionsen_US
dc.typeArticleen_US
dc.identifier.citationGrant, Elyot, Chinmay Hegde, and Piotr Indyk. "Nearly Optimal Linear Embeddings into Very Low Dimensions." 3-5 Dec. 2013, Austin, Texas, IEEE, 2013, pp. 973–76.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorGrant, Elyot
dc.contributor.mitauthorHegde, Chinmay
dc.contributor.mitauthorIndyk, Piotr
dc.relation.journal2013 IEEE Global Conference on Signal and Information Processingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsGrant, Elyot; Hegde, Chinmay; Indyk, Piotren_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7983-9524
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record