dc.contributor.author | Grant, Elyot | |
dc.contributor.author | Hegde, Chinmay | |
dc.contributor.author | Indyk, Piotr | |
dc.date.accessioned | 2018-02-14T20:36:21Z | |
dc.date.available | 2018-02-14T20:36:21Z | |
dc.date.issued | 2014-02 | |
dc.date.submitted | 2013-12 | |
dc.identifier.isbn | 978-1-4799-0248-4 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/113673 | |
dc.description.abstract | We propose algorithms for constructing linear embeddings of a finite dataset V ⊂ ℝ[superscript d] into a k-dimensional subspace with provable, nearly optimal distortions. First, we propose an exhaustive-search-based algorithm that yields a k-dimensional linear embedding with distortion at most ε[subscript opt](k)+δ, for any δ > 0 where ε[subscript opt](k) is the smallest achievable distortion over all possible orthonormal embeddings. This algorithm is space-efficient and can be achieved by a single pass over the data V. However, the runtime of this algorithm is exponential in k. Second, we propose a convex-programming-based algorithm that yields an O(k/δ)-dimensional orthonormal embedding with distortion at most (1 + δ)ε[subscript opt](k). The runtime of this algorithm is polynomial in d and independent of k. Several experiments demonstrate the benefits of our approach over conventional linear embedding techniques, such as principal components analysis (PCA) or random projections. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) | en_US |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of Canada | en_US |
dc.description.sponsorship | Center for Massive Data Algorithmics (MADALGO) | en_US |
dc.description.sponsorship | David & Lucile Packard Foundation | en_US |
dc.description.sponsorship | MITEI-Shell Program | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/GlobalSIP.2013.6737055 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT Web Domain | en_US |
dc.title | Nearly optimal linear embeddings into very low dimensions | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Grant, Elyot, Chinmay Hegde, and Piotr Indyk. "Nearly Optimal Linear Embeddings into Very Low Dimensions." 3-5 Dec. 2013, Austin, Texas, IEEE, 2013, pp. 973–76. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Grant, Elyot | |
dc.contributor.mitauthor | Hegde, Chinmay | |
dc.contributor.mitauthor | Indyk, Piotr | |
dc.relation.journal | 2013 IEEE Global Conference on Signal and Information Processing | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Grant, Elyot; Hegde, Chinmay; Indyk, Piotr | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-7983-9524 | |
mit.license | OPEN_ACCESS_POLICY | en_US |