Show simple item record

dc.contributor.authorPark, Woosung
dc.contributor.authorRomano, Giuseppe
dc.contributor.authorAhn, Ethan C.
dc.contributor.authorKodama, Takashi
dc.contributor.authorPark, Joonsuk
dc.contributor.authorBarako, Michael T.
dc.contributor.authorSohn, Joon
dc.contributor.authorKim, Soo Jin
dc.contributor.authorCho, Jungwan
dc.contributor.authorMarconnet, Amy M.
dc.contributor.authorAsheghi, Mehdi
dc.contributor.authorKolpak, Alexie M.
dc.contributor.authorGoodson, Kenneth E.
dc.date.accessioned2018-02-15T16:03:40Z
dc.date.available2018-02-15T16:03:40Z
dc.date.issued2017-07
dc.date.submitted2017-03
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/113683
dc.description.abstractHere we study single-crystalline silicon nanobeams having 470 nm width and 80 nm thickness cross section, where we produce tortuous thermal paths (i.e. labyrinths) by introducing slits to control the impact of the unobstructed "line-of-sight" (LOS) between the heat source and heat sink. The labyrinths range from straight nanobeams with a complete LOS along the entire length to nanobeams in which the LOS ranges from partially to entirely blocked by introducing slits, s = 95, 195, 245, 295 and 395 nm. The measured thermal conductivity of the samples decreases monotonically from ∼47 W m⁻¹ K⁻¹ for straight beam to ∼31 W m⁻¹ K⁻¹ for slit width of 395 nm. A model prediction through a combination of the Boltzmann transport equation and ab initio calculations shows an excellent agreement with the experimental data to within ∼8%. The model prediction for the most tortuous path (s = 395 nm) is reduced by ∼14% compared to a straight beam of equivalent cross section. This study suggests that LOS is an important metric for characterizing and interpreting phonon propagation in nanostructures.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1336734)en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0001299)en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Sciences (Award DE-FG02-09ER46577)en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/S41598-017-06479-3en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.titlePhonon Conduction in Silicon Nanobeam Labyrinthsen_US
dc.typeArticleen_US
dc.identifier.citationPark, Woosung et al. “Phonon Conduction in Silicon Nanobeam Labyrinths.” Scientific Reports 7, 1 (July 2017): 6233 © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorRomano, Giuseppe
dc.contributor.mitauthorKolpak, Alexie M.
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-02-09T17:41:23Z
dspace.orderedauthorsPark, Woosung; Romano, Giuseppe; Ahn, Ethan C.; Kodama, Takashi; Park, Joonsuk; Barako, Michael T.; Sohn, Joon; Kim, Soo Jin; Cho, Jungwan; Marconnet, Amy M.; Asheghi, Mehdi; Kolpak, Alexie M.; Goodson, Kenneth E.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4347-0139
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record