Show simple item record

dc.contributor.authorZhang, H.
dc.contributor.authorTersoff, J.
dc.contributor.authorXu, S.
dc.contributor.authorChen, H.
dc.contributor.authorZhang, Q.
dc.contributor.authorZhang, K.
dc.contributor.authorYang, Y.
dc.contributor.authorLee, C.-S.
dc.contributor.authorTu, K.-N.
dc.contributor.authorLu, Y.
dc.contributor.authorLi, James
dc.date.accessioned2018-02-15T16:11:13Z
dc.date.available2018-02-15T16:11:13Z
dc.date.issued2016-08
dc.date.submitted2015-10
dc.identifier.issn2375-2548
dc.identifier.urihttp://hdl.handle.net/1721.1/113684
dc.description.abstractAchieving high elasticity for silicon (Si) nanowires, one of the most important and versatile building blocks in nanoelectronics, would enable their application in flexible electronics and bio-nano interfaces. We show that vapor-liquid-solid-grown single-crystalline Si nanowires with diameters of ~100 nm can be repeatedly stretched above 10% elastic strain at room temperature, approaching the theoretical elastic limit of silicon (17 to 20%). A few samples even reached ~16% tensile strain, with estimated fracture stress up to ~20 GPa. The deformations were fully reversible and hysteresis-free under loading-unloading tests with varied strain rates, and the failures still occurred in brittle fracture, with no visible sign of plasticity. The ability to achieve this "deep ultra-strength" for Si nanowires can be attributed mainly to their pristine, defect-scarce, nanosized single-crystalline structure and atomically smooth surfaces. This result indicates that semiconductor nanowires could have ultra-large elasticity with tunable band structures for promising "elastic strain engineering" applications.en_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1126/SCIADV.1501382en_US
dc.rightsAttribution-NonCommercial 2.0 Generic (CC BY-NC 2.0)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/2.0/en_US
dc.titleApproaching the ideal elastic strain limit in silicon nanowiresen_US
dc.typeArticleen_US
dc.identifier.citationZhang, H. et al. “Approaching the Ideal Elastic Strain Limit in Silicon Nanowires.” Science Advances 2, 8 (August 2016): e1501382–e1501382 © 2016 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorLi, James
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-02-09T18:20:47Z
dspace.orderedauthorsZhang, H.; Tersoff, J.; Xu, S.; Chen, H.; Zhang, Q.; Zhang, K.; Yang, Y.; Lee, C.-S.; Tu, K.-N.; Li, J.; Lu, Y.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record