Show simple item record

dc.contributor.authorKrishnan, Dilip
dc.contributor.authorShih, YiChang
dc.contributor.authorDurand, Frederic
dc.contributor.authorFreeman, William T.
dc.date.accessioned2018-02-20T14:42:52Z
dc.date.available2018-02-20T14:42:52Z
dc.date.issued2015-10
dc.date.submitted2015-06
dc.identifier.isbn978-1-4673-6964-0
dc.identifier.urihttp://hdl.handle.net/1721.1/113822
dc.description.abstractPhotographs taken through glass windows often contain both the desired scene and undesired reflections. Separating the reflection and transmission layers is an important but ill-posed problem that has both aesthetic and practical applications. In this work, we introduce the use of ghosting cues that exploit asymmetry between the layers, thereby helping to reduce the ill-posedness of the problem. These cues arise from shifted double reflections of the reflected scene off the glass surface. In double-pane windows, each pane reflects shifted and attenuated versions of objects on the same side of the glass as the camera. For single-pane windows, ghosting cues arise from shifted reflections on the two surfaces of the glass pane. Even though the ghosting is sometimes barely perceptible by humans, we can still exploit the cue for layer separation. In this work, we model the ghosted reflection using a double-impulse convolution kernel, and automatically estimate the spatial separation and relative attenuation of the ghosted reflection components. To separate the layers, we propose an algorithm that uses a Gaussian Mixture Model for regularization. Our method is automatic and requires only a single input image. We demonstrate that our approach removes a large fraction of reflections on both synthetic and real-world inputs.en_US
dc.description.sponsorshipQuanta Computer (Firm)en_US
dc.description.sponsorshipQatar Computing Research Instituteen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CVPR.2015.7298939en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleReflection removal using ghosting cuesen_US
dc.typeArticleen_US
dc.identifier.citationYiChang Shih, et al. "Reflection Removal Using Ghosting Cues." 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7-12 June 2015, Boston, Massachusetts, IEEE, 2015, pp. 3193–201.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorShih, YiChang
dc.contributor.mitauthorDurand, Frederic
dc.contributor.mitauthorFreeman, William T.
dc.relation.journal2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsYiChang Shih; Krishnan, Dilip; Durand, Fredo; Freeman, William T.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9919-069X
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record