Show simple item record

dc.contributor.authorWoodruff, David P.
dc.contributor.authorBackurs, Arturs
dc.contributor.authorIndyk, Piotr
dc.contributor.authorRazenshteyn, Ilya
dc.date.accessioned2018-02-20T21:06:25Z
dc.date.available2018-02-20T21:06:25Z
dc.date.issued2016-01
dc.identifier.isbn978-1-611974-33-1
dc.identifier.urihttp://hdl.handle.net/1721.1/113845
dc.description.abstractWe initiate the study of trade-offs between sparsity and the number of measurements in sparse recovery schemes for generic norms. Specifically for a norm ||·||, sparsity parameter k, approximation factor K > 0, and probability of failure P > 0, we ask: what is the minimal value of m so that there is a distribution over m × n matrices A with the property that for any x, given Ax, we can recover a k-sparse approximation to x in the given norm with probability at least 1 -- P? We give a partial answer to this problem, by showing that for norms that admit efficient linear sketches, the optimal number of measurements m is closely related to the doubling dimension of the metric induced by the norm ||·|| on the set of all k-sparse vectors. By applying our result to specific norms, we cast known measurement bounds in our general framework (for the [subscript ℓ]p norms, p ∈ [1, 2]) as well as provide new, measurement-efficient schemes (for the Earth-Mover Distance norm). The latter result directly implies more succinct linear sketches for the well-studied planar k-median clustering problem. Finally our lower bound for the doubling dimension of the EMD norm enables us to resolve the open question of [Frahling-Sohler, STOC'05] about the space complexity of clustering problems in the dynamic streaming model.en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionofhttp://dl.acm.org/citation.cfm?id=2884459en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleNearly-optimal bounds for sparse recovery in generic norms, with applications to k-median sketchingen_US
dc.typeArticleen_US
dc.identifier.citationBackurs, Arturs et al. "Nearly-optimal bounds for sparse recovery in generic norms, with applications to k-median sketching." SODA '16 Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, 20-12 January, 2016, Philadelphia, Pennsylvania, Association of Computing Machinery, 2016, pp. 318-337.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorBackurs, Arturs
dc.contributor.mitauthorIndyk, Piotr
dc.contributor.mitauthorRazenshteyn, Ilya
dc.relation.journalSODA '16 Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithmsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBackurs, Arturs; Indyk, Piotr; Razenshteyn, Ilya; Woodruff, David P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7546-6313
dc.identifier.orcidhttps://orcid.org/0000-0002-7983-9524
dc.identifier.orcidhttps://orcid.org/0000-0002-3962-721X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record