Show simple item record

dc.contributor.authorBelloni, Alberto
dc.contributor.authorChernozhukov, Victor V
dc.contributor.authorKato, Kengo
dc.date.accessioned2018-02-21T16:36:51Z
dc.date.available2018-02-21T16:36:51Z
dc.date.issued2014-12
dc.date.submitted2014-08
dc.identifier.issn0006-3444
dc.identifier.issn1464-3510
dc.identifier.urihttp://hdl.handle.net/1721.1/113850
dc.description.abstractWe develop uniformly valid confidence regions for regression coefficients in a highdimensional sparse median regression model with homoscedastic errors. Our methods are based on amoment equation that is immunized against nonregular estimation of the nuisance part of the median regression function by using Neyman's orthogonalization. We establish that the resulting instrumental median regression estimator of a target regression coefficient is asymptotically normally distributed uniformly with respect to the underlying sparse model and is semiparametrically efficient.We also generalize our method to a general nonsmooth Z-estimation framework where the number of target parameters is possibly much larger than the sample size. We extend Huber's results on asymptotic normality to this setting, demonstrating uniform asymptotic normality of the proposed estimators over rectangles, constructing simultaneous confidence bands on all of the target parameters, and establishing asymptotic validity of the bands uniformly over underlying approximately sparse models.en_US
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/BIOMET/ASU056en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleUniform post-selection inference for least absolute deviation regression and other Z-estimation problemsen_US
dc.typeArticleen_US
dc.identifier.citationBelloni, A. et al. “Uniform Post-Selection Inference for Least Absolute Deviation Regression and Other Z-Estimation Problems.” Biometrika 102, 1 (December 2014): 77–94 © 2014 Biometrika Trusten_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Economicsen_US
dc.contributor.mitauthorBelloni, Alberto
dc.contributor.mitauthorChernozhukov, Victor V
dc.contributor.mitauthorKato, Kengo
dc.relation.journalBiometrikaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-02-20T18:36:29Z
dspace.orderedauthorsBelloni, A.; Chernozhukov, V.; Kato, K.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3250-6714
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record