Stress Transmission and Failure in Disordered Porous Media
Author(s)
Laubie, Hadrien H; Radjai, Farhang; Pellenq, Roland Jm; Ulm, Franz-Josef
DownloadPhysRevLett.119.075501.pdf (1.657Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
By means of extensive lattice-element simulations, we investigate stress transmission and its relation with failure properties in increasingly disordered porous systems. We observe a non-Gaussian broadening of stress probability density functions under tensile loading with increasing porosity and disorder, revealing a gradual transition from a state governed by single-pore stress concentration to a state controlled by multipore interactions and metric disorder. This effect is captured by the excess kurtosis of stress distributions and shown to be nicely correlated with the second moment of local porosity fluctuations, which appears thus as a (dis)order parameter for the system. By generating statistical ensembles of porous textures with varying porosity and disorder, we derive a general expression for the fracture stress as a decreasing function of porosity and disorder. Focusing on critical sites where the local stress is above the global fracture threshold, we also analyze the transition to failure in terms of a coarse-graining length. These findings provide a general framework which can also be more generally applied to multiphase and structural heterogeneous materials.
Date issued
2017-08Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; MultiScale Materials Science for Energy and Environment, Joint MIT-CNRS LaboratoryJournal
Physical Review Letters
Publisher
American Physical Society
Citation
Laubie, Hadrien, et al. “Stress Transmission and Failure in Disordered Porous Media.” Physical Review Letters, vol. 119, no. 7, Aug. 2017. © 2017 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114