Show simple item record

dc.contributor.authorSankowski, Piotr
dc.contributor.authorCohen, Michael B.
dc.contributor.authorMadry, Aleksander
dc.contributor.authorVladu, Adrian Valentin
dc.date.accessioned2018-02-26T15:52:25Z
dc.date.available2018-02-26T15:52:25Z
dc.date.issued2017-01
dc.identifier.urihttp://hdl.handle.net/1721.1/113883
dc.description.abstractIn this paper, we study a set of combinatorial optimization problems on weighted graphs: the shortest path problem with negative weights, the weighted perfect bipartite matching problem, the unit-capacity minimum-cost maximum flow problem, and the weighted perfect bipartite b-matching problem under the assumption that ||b||1 = O(m). We show that each of these four problems can be solved in Õ(m[superscript 10/7] log W) time, where W is the absolute maximum weight of an edge in the graph, providing the first polynomial improvement in their sparse-graph time complexity in over 25 years. At a high level, our algorithms build on the interior-point method-based framework developed by Mądry (FOCS 2013) for solving unit-capacity maximum flow problem. We develop a refined way to analyze this framework, as well as provide new variants of the underlying preconditioning and perturbation techniques. Consequently, we are able to extend the whole interior-point method-based approach to make it applicable in the weighted graph regime.en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionofhttp://dl.acm.org/citation.cfm?id=3039734en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleNegative-Weight shortest paths and unit capacity minimum cost flow in Õ(m[superscript 10/7] log W) Timeen_US
dc.typeArticleen_US
dc.identifier.citationCohen, Michael B. et al. "Negative-weight shortest paths and unit capacity minimum cost flow in Õ(m[superscript 10/7] log W) time." Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithm, 16-19 January 2017, Barcelona, Spain, Association for Computing Machinery, 2017. pp. 752-771.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorCohen, Michael B.
dc.contributor.mitauthorMadry, Aleksander
dc.contributor.mitauthorVladu, Adrian Valentin
dc.relation.journalProceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithmen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCohen, Michael B.; Madr, Aleksander; Sankowski, Piotr; Vladu, Adrianen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7388-6936
dc.identifier.orcidhttps://orcid.org/0000-0003-0536-0323
dc.identifier.orcidhttps://orcid.org/0000-0003-0722-304X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record