Show simple item record

dc.contributor.authorBelloni, Alexandre
dc.contributor.authorHansen, Christian
dc.contributor.authorKozbur, Damian
dc.contributor.authorChernozhukov, Victor V
dc.date.accessioned2018-03-01T21:55:21Z
dc.date.available2018-03-01T21:55:21Z
dc.date.issued2015-11
dc.date.submitted2014-12
dc.identifier.issn0735-0015
dc.identifier.issn1537-2707
dc.identifier.urihttp://hdl.handle.net/1721.1/113908
dc.description.abstractWe consider estimation and inference in panel data models with additive unobserved individual specific heterogeneity in a high-dimensional setting. The setting allows the number of time-varying regressors to be larger than the sample size. To make informative estimation and inference feasible, we require that the overall contribution of the time-varying variables after eliminating the individual specific heterogeneity can be captured by a relatively small number of the available variables whose identities are unknown. This restriction allows the problem of estimation to proceed as a variable selection problem. Importantly, we treat the individual specific heterogeneity as fixed effects which allows this heterogeneity to be related to the observed time-varying variables in an unspecified way and allows that this heterogeneity may differ for all individuals. Within this framework, we provide procedures that give uniformly valid inference over a fixed subset of parameters in the canonical linear fixed effects model and over coefficients on a fixed vector of endogenous variables in panel data instrumental variable models with fixed effects and many instruments. We present simulation results in support of the theoretical developments and illustrate the use of the methods in an application aimed at estimating the effect of gun prevalence on crime rates.en_US
dc.description.sponsorshipETH Postdoctoral Fellowshipen_US
dc.publisherInforma UK Limiteden_US
dc.relation.isversionofhttp://dx.doi.org/10.1080/07350015.2015.1102733en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleInference in High-Dimensional Panel Models With an Application to Gun Controlen_US
dc.typeArticleen_US
dc.identifier.citationBelloni, Alexandre, Victor Chernozhukov, Christian Hansen, and Damian Kozbur. “Inference in High-Dimensional Panel Models With an Application to Gun Control.” Journal of Business & Economic Statistics 34, no. 4 (September 15, 2016): 590–605.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Economicsen_US
dc.contributor.mitauthorChernozhukov, Victor V
dc.relation.journalJournal of Business & Economic Statisticsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-02-20T17:57:42Z
dspace.orderedauthorsBelloni, Alexandre; Chernozhukov, Victor; Hansen, Christian; Kozbur, Damianen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3250-6714
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record