Show simple item record

dc.contributor.authorParno, Matthew
dc.contributor.authorMoselhy, Tarek
dc.contributor.authorMarzouk, Youssef M
dc.date.accessioned2018-03-06T15:25:16Z
dc.date.available2018-03-06T15:25:16Z
dc.date.issued2016-10
dc.date.submitted2016-07
dc.identifier.issn2166-2525
dc.identifier.urihttp://hdl.handle.net/1721.1/114027
dc.description.abstractIn many inverse problems, model parameters cannot be precisely determined from observational data. Bayesian inference provides a mechanism for capturing the resulting parameter uncertainty, but typically at a high computational cost. This work introduces a multiscale decomposition that exploits conditional independence across scales, when present in certain classes of inverse problems, to decouple Bayesian inference into two stages: (1) a computationally tractable coarse-scale inference problem, and (2) a mapping of the low-dimensional coarse-scale posterior distribution into the original high-dimensional parameter space. This decomposition relies on a characterization of the non-Gaussian joint distribution of coarse- and fine-scale quantities via optimal transport maps. We demonstrate our approach on a sequence of inverse problems arising in subsurface flow, using the multiscale finite element method to discretize the steady state pressure equation. We compare the multiscale strategy with full-dimensional Markov chain Monte Carlo on a problem of moderate dimension (100 parameters) and then use it to infer a conductivity field described by over 10000 parameters. Keywords: Bayesian inference; inverse problems; multiscale modeling; multiscale finite element method; optimal transportation; Markov chain Monte Carloen_US
dc.description.sponsorshipUnited States. Department of Energy (Contract DE-AC05-06OR23100)en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-SC0009297)en_US
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/15M1032478en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSociety for Industrial and Applied Mathematicsen_US
dc.titleA Multiscale Strategy for Bayesian Inference Using Transport Mapsen_US
dc.typeArticleen_US
dc.identifier.citationParno, Matthew et al. “A Multiscale Strategy for Bayesian Inference Using Transport Maps.” SIAM/ASA Journal on Uncertainty Quantification 4, 1 (January 2016): 1160–1190 © 2016 Society for Industrial & Applied Mathematics (SIAM)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorMoselhy, Tarek
dc.contributor.mitauthorMarzouk, Youssef M
dc.relation.journalSIAM/ASA Journal on Uncertainty Quantificationen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-03-02T17:04:43Z
dspace.orderedauthorsParno, Matthew; Moselhy, Tarek; Marzouk, Youssefen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8242-3290
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record