Show simple item record

dc.contributor.authorLiu, Han
dc.contributor.authorWang, Lie
dc.date.accessioned2018-03-19T17:51:15Z
dc.date.available2018-03-19T17:51:15Z
dc.date.issued2017-02
dc.date.submitted2013-06
dc.identifier.issn1935-7524
dc.identifier.urihttp://hdl.handle.net/1721.1/114214
dc.description.abstractWe propose a new procedure for optimally estimating high dimensional Gaussian graphical models. Our approach is asymptotically tuning-free and non-asymptotically tuning-insensitive: It requires very little effort to choose the tuning parameter in finite sample settings. Computationally, our procedure is significantly faster than existing methods due to its tuning-insensitive property. Theoretically, the obtained estimator simultaneously achieves minimax lower bounds for precision matrix estimation under different norms. Empirically, we illustrate the advantages of the proposed method using simulated and real examples. The R package camel implementing the proposed methods is also available on the Comprehensive R Archive Network.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1005539)en_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1214/16-EJS1195en_US
dc.rightsAttribution 2.5 Generic (CC BY 2.5)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/2.5/en_US
dc.sourceElectronic Journal of Statisticsen_US
dc.titleTIGER: A tuning-insensitive approach for optimally estimating Gaussian graphical modelsen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Han, and Lie Wang. “TIGER: A Tuning-Insensitive Approach for Optimally Estimating Gaussian Graphical Models.” Electronic Journal of Statistics 11, 1 (February 2017): 241–294 © 2017 Institute of Mathematical Statisticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorWang, Lie
dc.relation.journalElectronic Journal of Statisticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-02-16T19:01:33Z
dspace.orderedauthorsLiu, Han; Wang, Lieen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3582-8898
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record