Show simple item record

dc.contributor.authorQuon, Gerald
dc.contributor.authorSabuncu, Mert
dc.contributor.authorBatmanghelich, Nematollah
dc.contributor.authorDalca, Adrian Vasile
dc.contributor.authorGolland, Polina
dc.date.accessioned2018-03-19T19:43:06Z
dc.date.available2018-03-19T19:43:06Z
dc.date.issued2016-02
dc.identifier.issn0278-0062
dc.identifier.issn1558-254X
dc.identifier.urihttp://hdl.handle.net/1721.1/114228
dc.description.abstractWe propose a unified Bayesian framework for detecting genetic variants associated with disease by exploiting image-based features as an intermediate phenotype. The use of imaging data for examining genetic associations promises new directions of analysis, but currently the most widely used methods make sub-optimal use of the richness that these data types can offer. Currently, image features are most commonly selected based on their relevance to the disease phenotype. Then, in a separate step, a set of genetic variants is identified to explain the selected features. In contrast, our method performs these tasks simultaneously in order to jointly exploit information in both data types. The analysis yields probabilistic measures of clinical relevance for both imaging and genetic markers. We derive an efficient approximate inference algorithm that handles the high dimensionality of image and genetic data. We evaluate the algorithm on synthetic data and demonstrate that it outperforms traditional models. We also illustrate our method on Alzheimer's Disease Neuroimaging Initiative data.en_US
dc.description.sponsorshipNational Alliance for Medical Image Computing (U.S.) (U54-EB005149)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (NAC P41-RR13218)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (NAC P41-EB-015902)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (1K25EB013649-01)en_US
dc.description.sponsorshipBrightFocus Foundation (AHAF-A2012333)en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (CGS-D)en_US
dc.description.sponsorshipBarbara J. Weedon Fellowshipen_US
dc.description.sponsorshipWistron Corporationen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/tmi.2016.2527784en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleProbabilistic Modeling of Imaging, Genetics and Diagnosisen_US
dc.typeArticleen_US
dc.identifier.citationBatmanghelich, Nematollah K., et al. “Probabilistic Modeling of Imaging, Genetics and Diagnosis.” IEEE Transactions on Medical Imaging, vol. 35, no. 7, July 2016, pp. 1765–79.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorBatmanghelich, Nematollah
dc.contributor.mitauthorDalca, Adrian Vasile
dc.contributor.mitauthorGolland, Polina
dc.relation.journalIEEE Transactions on Medical Imagingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBatmanghelich, Nematollah K.; Dalca, Adrian; Quon, Gerald; Sabuncu, Mert; Golland, Polinaen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1164-0500
dc.identifier.orcidhttps://orcid.org/0000-0002-8422-0136
dc.identifier.orcidhttps://orcid.org/0000-0003-2516-731X
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record