MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ultralow thermal conductivity in all-inorganic halide perovskites

Author(s)
Lee, Woochul; Li, Huashan; Wong, Andrew B.; Zhang, Dandan; Lai, Minliang; Yu, Yi; Kong, Qiao; Lin, Elbert; Urban, Jeffrey J.; Grossman, Jeffrey C.; Yang, Peidong; ... Show more Show less
Thumbnail
DownloadGrossman_Ultralow thermal.pdf (3.465Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Controlling the flow of thermal energy is crucial to numerous applications ranging from microelectronic devices to energy storage and energy conversion devices. Here, we report ultralow lattice thermal conductivities of solution-synthesized, single-crystalline all-inorganic halide perovskite nanowires composed of CsPbI[subscript 3] (0.45 ± 0.05 W·m[superscript −1] ·K[superscript −1]), CsPbBr[subscript 3] (0.42 ± 0.04 W·m[superscript −1] ·K [superscript −1]), and CsSnI[superscript 3] (0.38 ± 0.04 W·m[superscript −1] ·K[superscript −1]). We attribute this ultralow thermal conductivity to the cluster rattling mechanism, wherein strong optical–acoustic phonon scatterings are driven by a mixture of 0D/1D/2D collective motions. Remarkably, CsSnI[superscript 3] possesses a rare combination of ultralow thermal conductivity, high electrical conductivity (282 S·cm[superscript −1]), and high hole mobility (394 cm[superscript 2] ·V[superscript −1] ·s[superscript −1]). The unique thermal transport properties in all-inorganic halide perovskites hold promise for diverse applications such as phononic and thermoelectric devices. Furthermore, the insights obtained from this work suggest an opportunity to discover low thermal conductivity materials among unexplored inorganic crystals beyond caged and layered structures. Keywords: halide perovski, tethermal conductivity, thermal transport, nanowire, thermoelectrics
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/114231
Department
Massachusetts Institute of Technology. Center for Materials Science and Engineering; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Proceedings of the National Academy of Sciences
Publisher
Proceedings of the National Academy of Sciences
Citation
Lee, Woochul, Huashan Li, Andrew B. Wong, Dandan Zhang, Minliang Lai, Yi Yu, Qiao Kong, et al. “Ultralow Thermal Conductivity in All-Inorganic Halide Perovskites.” Proceedings of the National Academy of Sciences 114, no. 33 (July 31, 2017): 8693–8697. © 2017 National Academy of Sciences
Version: Final published version
ISSN
0027-8424
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.