Show simple item record

dc.contributor.authorWei, Di S.
dc.contributor.authorvan der Sar, Toeno
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorHalperin, Bertrand I.
dc.contributor.authorYacoby, Amir
dc.contributor.authorSanchez, Javier Daniel
dc.contributor.authorJarillo-Herrero, Pablo
dc.date.accessioned2018-03-20T18:52:19Z
dc.date.available2018-03-20T18:52:19Z
dc.date.issued2017-08
dc.date.submitted2017-02
dc.identifier.issn2375-2548
dc.identifier.urihttp://hdl.handle.net/1721.1/114239
dc.description.abstractConfined to a two-dimensional plane, electrons in a strong magnetic field travel along the edge in one-dimensional quantum Hall channels that are protected against backscattering. These channels can be used as solid-state analogs of monochromatic beams of light, providing a unique platform for studying electron interference. Electron interferometry is regarded as one of the most promising routes for studying fractional and non-Abelian statistics and quantum entanglement via two-particle interference. However, creating an edge-channel interferometer in which electron-electron interactions play an important role requires a clean system and long phase coherence lengths. We realize electronic Mach-Zehnder interferometers with record visibilities of up to 98% using spin- and valley-polarized edge channels that copropagate along a pn junction in graphene. We find that interchannel scattering between same-spin edge channels along the physical graphene edge can be used to form beamsplitters, whereas the absence of interchannel scattering along gate-defined interfaces can be used to form isolated interferometer arms. Surprisingly, our interferometer is robust to dephasing effects at energies an order of magnitude larger than those observed in pioneering experiments on GaAs/AlGaAs quantum wells. Our results shed light on the nature of edge-channel equilibration and open up new possibilities for studying exotic electron statistics and quantum phenomena.en_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1126/SCIADV.1700600en_US
dc.rightsAttribution-NonCommercial 2.0 Generic (CC BY-NC 2.0)en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/2.0/en_US
dc.titleMach-Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in grapheneen_US
dc.typeArticleen_US
dc.identifier.citationWei, Di S. et al. “Mach-Zehnder Interferometry Using Spin- and Valley-Polarized Quantum Hall Edge States in Graphene.” Science Advances 3, 8 (August 2017): e1700600 © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorSanchez, Javier Daniel
dc.contributor.mitauthorJarillo-Herrero, Pablo
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-02-09T18:36:44Z
dspace.orderedauthorsWei, Di S.; van der Sar, Toeno; Sanchez-Yamagishi, Javier D.; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Halperin, Bertrand I.; Yacoby, Amiren_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9703-6525
dc.identifier.orcidhttps://orcid.org/0000-0001-8217-8213
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record