Show simple item record

dc.contributor.authorPan, Keyao
dc.contributor.authorBricker, William P
dc.contributor.authorRatanalert, Sakul
dc.contributor.authorBathe, Mark
dc.date.accessioned2018-03-20T19:40:47Z
dc.date.available2018-03-20T19:40:47Z
dc.date.issued2017-06
dc.date.submitted2017-04
dc.identifier.issn0305-1048
dc.identifier.issn1362-4962
dc.identifier.urihttp://hdl.handle.net/1721.1/114242
dc.description.abstractSynthetic DNA is a highly programmable nanoscale material that can be designed to self-assemble into 3D structures that are fu lly determined by underlying Watson-Crick base pairing. The double crossover (DX) design motif has demonstrated versatility in synthesizing arbitrary DNA nanoparticles on the 5- 100 nm scale for diverse applications in biotechnology. Prior computational investigations of these assemblies include all-atom and coarse-grained modeling, but modeling their conformational dynamics remains challenging due to their long relaxation times and associated computational cost. We apply all-atom molecular dynamics and coarse-grained finite element modeling to DX-based nanoparticles to elucidate their fine-scale and global conformational structure and dynamics. We use our coarsegrained model with a set of secondary structural motifs to predict the equilibrium solution structures of 45 DX-based DNA origami nanoparticles including a tetrahedron, octahedron, icosahedron, cuboctahedron and reinforced cube. Coarse-grained models are compared with 3D cryo-electron microscopy density maps for these five DNA nanoparticles and with all-atom molecular dynamics simulations for the tetrahedron and octahedron. Our results elucidate non-intuitive atomic-level structural details of DXbased DNA nanoparticles, and offer a general framework for efficient computational prediction of global and local structural andmechanical properties of DXbased assemblies that are inaccessible to all-atom based models alone.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-12-1-0621)en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF1210420)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1560425)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-13-1-0664)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-15-1-2830)en_US
dc.publisherOxford University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/NAR/GKX378en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceNucleic Acids Researchen_US
dc.titleStructure and conformational dynamics of scaffolded DNA origami nanoparticlesen_US
dc.typeArticleen_US
dc.identifier.citationPan, Keyao et al. “Structure and Conformational Dynamics of Scaffolded DNA Origami Nanoparticles.” Nucleic Acids Research 45, 11 (May 2017): 6284–6298 © 2017 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorPan, Keyao
dc.contributor.mitauthorBricker, William P
dc.contributor.mitauthorRatanalert, Sakul
dc.contributor.mitauthorBathe, Mark
dc.relation.journalNucleic Acids Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-02-23T20:15:43Z
dspace.orderedauthorsPan, Keyao; Bricker, William P.; Ratanalert, Sakul; Bathe, Marken_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4573-5206
dc.identifier.orcidhttps://orcid.org/0000-0002-1766-807X
dc.identifier.orcidhttps://orcid.org/0000-0002-6199-6855
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record