Show simple item record

dc.contributor.authorBelloni, Alexandre
dc.contributor.authorChernozhukov, Victor V
dc.date.accessioned2018-03-27T17:16:52Z
dc.date.available2018-03-27T17:16:52Z
dc.date.issued2014-02
dc.date.submitted2012-01
dc.identifier.issn1368-4221
dc.identifier.issn1368-423X
dc.identifier.urihttp://hdl.handle.net/1721.1/114403
dc.description.abstractIn this paper, we study the large-sample properties of the posterior-based inference in the curved exponential family under increasing dimensions. The curved structure arises from the imposition of various restrictions on the model, such as moment restrictions, and plays a fundamental role in econometrics and others branches of data analysis. We establish conditions under which the posterior distribution is approximately normal, which in turn implies various good properties of estimation and inference procedures based on the posterior. In the process, we also revisit and improve upon previous results for the exponential family under increasing dimensions by making use of concentration of measure. We also discuss a variety of applications to high-dimensional versions of classical econometric models, including the multinomial model with moment restrictions, seemingly unrelated regression equations, and single structural equation models. In our analysis, both the parameter dimensions and the number of moments are increasing with the sample size.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipSloan Foundation (Research Fellowship)en_US
dc.publisherWiley-Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1111/ECTJ.12027en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titlePosterior inference in curved exponential families under increasing dimensionsen_US
dc.typeArticleen_US
dc.identifier.citationBelloni, Alexandre, and Victor Chernozhukov. “Posterior Inference in Curved Exponential Families under Increasing Dimensions: Posterior Inference in Curved Exponential.” The Econometrics Journal, vol. 17, no. 2, June 2014, pp. S75–100.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Economics
dc.contributor.mitauthorChernozhukov, Victor V
dc.relation.journalThe Econometrics Journalen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-02-20T18:41:14Z
dspace.orderedauthorsBelloni, Alexandre; Chernozhukov, Victoren_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3250-6714
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record