Show simple item record

dc.contributor.authorMenacho, J.
dc.contributor.authorRotllant, L.
dc.contributor.authorMolins, J. J
dc.contributor.authorReyes, G.
dc.contributor.authorGarcía-Granada, A. A
dc.contributor.authorMartorell, J.
dc.contributor.authorMolins, J. J.
dc.contributor.authorGarcía-Granada, A. A.
dc.contributor.authorBalcells-Camps, Mercedes
dc.date.accessioned2018-03-28T16:20:47Z
dc.date.available2018-03-28T16:20:47Z
dc.date.issued2017-11
dc.date.submitted2017-07
dc.identifier.issn1617-7959
dc.identifier.issn1617-7940
dc.identifier.urihttp://hdl.handle.net/1721.1/114428
dc.description.abstractThe present study examines the possibility of attenuating blood pulses by means of introducing prosthetic viscoelastic materials able to absorb energy and damp such pulses. Vascular prostheses made of polymeric materials modify the mechanical properties of blood vessels. The effect of these materials on the blood pulse propagation remains to be fully understood. Several materials for medical applications, such as medical polydimethylsiloxane or polytetrafluoroethylene, show viscoelastic behavior, modifying the original vessel stiffness and affecting the propagation of blood pulses. This study focuses on the propagation of pressure waves along a pipe with viscoelastic materials using the Maxwell and the Zener models. An expression of exponential decay has been obtained for the Maxwell material model and also for low viscous coefficient values in the Zener model. For relatively high values of the viscous term in the Zener model, the steepest part of the pulse can be damped quickly, leaving a smooth, slowly decaying wave. These mathematical models are critical to tailor those materials used in cardiovascular implants to the mechanical environment they are confronted with to repair or improve blood vessel function. Keywords: pressure wave damping; circulatory system; cardiovascular disease; computational fluid dynamicsen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10237-017-0980-9en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleArterial pulse attenuation prediction using the decaying rate of a pressure wave in a viscoelastic material modelen_US
dc.typeArticleen_US
dc.identifier.citationMenacho, J. et al. “Arterial Pulse Attenuation Prediction Using the Decaying Rate of a Pressure Wave in a Viscoelastic Material Model.” Biomechanics and Modeling in Mechanobiology 17, 2 (April 2018): 589-603 © 2017 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.mitauthorBalcells-Camps, Mercedes
dc.relation.journalBiomechanics and Modeling in Mechanobiologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-11-23T05:16:12Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsMenacho, J.; Rotllant, L.; Molins, J. J.; Reyes, G.; García-Granada, A. A.; Balcells, M.; Martorell, J.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record