MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approximation-tolerant model-based compressive sensing

Author(s)
Hegde, Chinmay; Indyk, Piotr; Schmidt, Ludwig
Thumbnail
DownloadApproximation-tolerant.pdf (661.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The goal of sparse recovery is to recover a k-sparse signal x ε R[superscript n] from (possibly noisy) linear measurements of the form y = Ax, where A ε Rmxn describes the measurement process. Standard results in compressive sensing show that it is possible to recover the signal x from m = O(k log(n/k)) measurements, and that this bound is tight. The framework of model-based compressive sensing [BCDH10] overcomes the lower bound and reduces the number of measurements further to O(k) by limiting the supports of x to a subset M of the (nk) possible supports. This has led to many measurement-efficient algorithms for a wide variety of signal models, including block-sparsity and tree-sparsity. Unfortunately, extending the framework to other, more general models has been stymied by the following obstacle: for the framework to apply, one needs an algorithm that, given a signal x, solves the following optimization problem exactly: [EQUATION] (here x[n]\Ω denotes the projection of x on coordinates not in Ω). However, an approximation algorithm for this optimization task is not sufficient. Since many problems of this form are not known to have exact polynomial-time algorithms, this requirement poses an obstacle for extending the framework to a richer class of models. In this paper, we remove this obstacle and show how to extend the model-based compressive sensing framework so that it requires only approximate solutions to the aforementioned optimization problems. Interestingly, our extension requires the existence of approximation algorithms for both the maximization and the minimization variants of the optimization problem. Further, we apply our framework to the Constrained Earth Mover's Distance (CEMD) model introduced in [SHI13], obtaining a sparse recovery scheme that uses significantly less than O(k log(n/k)) measurements. This is the first non-trivial theoretical bound for this model, since the validation of the approach presented in [SHI13] was purely empirical. The result is obtained by designing a novel approximation algorithm for the maximization version of the problem and proving approximation guarantees for the minimization algorithm described in [SHI13].
Date issued
2014-01
URI
http://hdl.handle.net/1721.1/114469
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
SODA '14 Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
Publisher
Association for Computing Machinery
Citation
Hegde, Chinmay, Piotr Indyk, and Ludwig Schmidt. "Approximation-tolerant model-based compressive sensing." SODA '14 Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 5-7 January, 2014, Portland, Oregon, Association for Computing Machinery, 2014, pp. 1544-1561.
Version: Author's final manuscript
ISBN
978-1-611973-38-9

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.