Show simple item record

dc.contributor.authorChen, Yu Fan
dc.contributor.authorEverett, Michael F
dc.contributor.authorLiu, Miao
dc.contributor.authorHow, Jonathan P
dc.date.accessioned2018-03-30T17:34:04Z
dc.date.available2018-03-30T17:34:04Z
dc.date.issued2017-09
dc.identifier.isbn978-1-5386-2682-5
dc.identifier.urihttp://hdl.handle.net/1721.1/114480
dc.description.abstractFor robotic vehicles to navigate safely and efficiently in pedestrian-rich environments, it is important to model subtle human behaviors and navigation rules (e.g., passing on the right). However, while instinctive to humans, socially compliant navigation is still difficult to quantify due to the stochasticity in people's behaviors. Existing works are mostly focused on using feature-matching techniques to describe and imitate human paths, but often do not generalize well since the feature values can vary from person to person, and even run to run. This work notes that while it is challenging to directly specify the details of what to do (precise mechanisms of human navigation), it is straightforward to specify what not to do (violations of social norms). Specifically, using deep reinforcement learning, this work develops a time-efficient navigation policy that respects common social norms. The proposed method is shown to enable fully autonomous navigation of a robotic vehicle moving at human walking speed in an environment with many pedestrians.en_US
dc.description.sponsorshipFord Motor Companyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IROS.2017.8202312en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSocially aware motion planning with deep reinforcement learningen_US
dc.typeArticleen_US
dc.identifier.citationChen, Yu Fan, Michael Everett, Miao Liu, and Jonathan P. How. “Socially Aware Motion Planning with Deep Reinforcement Learning.” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (September 2017).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorChen, Yu Fan
dc.contributor.mitauthorEverett, Michael F
dc.contributor.mitauthorLiu, Miao
dc.contributor.mitauthorHow, Jonathan P
dc.relation.journal2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-03-21T16:09:33Z
dspace.orderedauthorsChen, Yu Fan; Everett, Michael; Liu, Miao; How, Jonathan P.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3756-3256
dc.identifier.orcidhttps://orcid.org/0000-0001-9377-6745
dc.identifier.orcidhttps://orcid.org/0000-0002-1648-8325
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record