Show simple item record

dc.contributor.authorNagai, Yuki
dc.contributor.authorShen, Huitao
dc.contributor.authorQi, Yang
dc.contributor.authorLiu, Junwei
dc.contributor.authorFu, Liang
dc.date.accessioned2018-03-30T17:49:38Z
dc.date.available2018-03-30T17:49:38Z
dc.date.issued2017-10
dc.date.submitted2017-05
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.urihttp://hdl.handle.net/1721.1/114482
dc.description.abstractThe recently introduced self-learning Monte Carlo method is a general-purpose numerical method that speeds up Monte Carlo simulations by training an effective model to propose uncorrelated configurations in the Markov chain. We implement this method in the framework of a continuous-time Monte Carlo method with an auxiliary field in quantum impurity models. We introduce and train a diagram generating function (DGF) to model the probability distribution of auxiliary field configurations in continuous imaginary time, at all orders of diagrammatic expansion. By using DGF to propose global moves in configuration space, we show that the self-learning continuous-time Monte Carlo method can significantly reduce the computational complexity of the simulation.en_US
dc.description.sponsorshipUnited States. Department of Energy. Office of Basic Energy Sciences (Award DE-SC0010526)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.96.161102en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleSelf-learning Monte Carlo method: Continuous-time algorithmen_US
dc.typeArticleen_US
dc.identifier.citationNagai, Yuki et al. "Self-learning Monte Carlo method: Continuous-time algorithm." Physical Review B 96, 16 (October 2017): 161102(R) © 2017 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorNagai, Yuki
dc.contributor.mitauthorShen, Huitao
dc.contributor.mitauthorQi, Yang
dc.contributor.mitauthorLiu, Junwei
dc.contributor.mitauthorFu, Liang
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-11-14T22:45:14Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsNagai, Yuki; Shen, Huitao; Qi, Yang; Liu, Junwei; Fu, Liangen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8051-7349
dc.identifier.orcidhttps://orcid.org/0000-0002-8803-1017
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record