MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Precise LIGO lensing rate predictions for binary black holes

Author(s)
Ng, Ken K. Y.; Wong, Kaze W. K.; Broadhurst, Tom; Li, Tjonnie G. F.
Thumbnail
DownloadPhysRevD.97.023012.pdf (496.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We show how LIGO is expected to detect coalescing binary black holes at z>1 that are lensed by the intervening galaxy population. Gravitational magnification, μ, strengthens gravitational-wave signals by √μ without altering their frequencies, which if unrecognized leads to an underestimate of the event redshift and hence an overestimate of the binary mass. High magnifications can be reached for coalescing binaries, because the region of intense gravitational-wave emission during coalescence is so small (∼100  km), permitting very close projections between lensing caustics and gravitational-wave events. Our simulations use the current LIGO event-based mass function and incorporate accurate waveforms convolved with the LIGO power spectral density. Importantly, we include the detection dependence on sky position and orbital orientation, which for the LIGO configuration translates into a wide spread in observed redshifts and chirp masses. Currently, we estimate a detectable rate of lensed events 0.06[superscript +0.02][subscript -0.02] yr[superscript -1] that rises to 5[superscript +5][subscript -3]  yr[superscript -1] at LIGO design sensitivity limit, depending on the high redshift rate of black hole coalescence.
Date issued
2018-01
URI
http://hdl.handle.net/1721.1/114520
Department
Massachusetts Institute of Technology. Department of Physics; LIGO (Observatory : Massachusetts Institute of Technology); MIT Kavli Institute for Astrophysics and Space Research
Journal
Physical Review D
Publisher
American Physical Society
Citation
Ng, Ken K. Y., et al. “Precise LIGO Lensing Rate Predictions for Binary Black Holes.” Physical Review D, vol. 97, no. 2, Jan. 2018. © 2018 American Physical Society
Version: Final published version
ISSN
2470-0010
2470-0029

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.