Show simple item record

dc.contributor.authorCui, Tiangang
dc.contributor.authorTenorio, Luis
dc.contributor.authorSpantini, Alessio
dc.contributor.authorWillcox, Karen E
dc.contributor.authorMarzouk, Youssef M
dc.date.accessioned2018-04-04T17:21:53Z
dc.date.available2018-04-04T17:21:53Z
dc.date.issued2017-10
dc.date.submitted2016-06
dc.identifier.issn1064-8275
dc.identifier.issn1095-7197
dc.identifier.urihttp://hdl.handle.net/1721.1/114544
dc.description.abstractWe propose optimal dimensionality reduction techniques for the solution of goal-oriented linear-Gaussian inverse problems, where the quantity of interest (QoI) is a function of the inversion parameters. These approximations are suitable for large-scale applications. In particular, we study the approximation of the posterior covariance of the QoI as a low-rank negative update of its prior covariance, and prove optimality of this update with respect to the natural geodesic distance on the manifold of symmetric positive definite matrices. Assuming exact knowledge of the posterior mean of the QoI, the optimality results extend to optimality in distribution with respect to the Kullback-Leibler divergence and the Hellinger distance between the associated distributions. We also propose approximation of the posterior mean of the QoI as a low-rank linear function of the data, and prove optimality of this approximation with respect to a weighted Bayes risk. Both of these optimal approximations avoid the explicit computation of the full posterior distribution of the parameters and instead focus on directions that are well informed by the data and relevant to the QoI. These directions stem from a balance among all the components of the goal-oriented inverse problem: prior information, forward model, measurement noise, and ultimate goals. We illustrate the theory using a high-dimensional inverse problem in heat transfer.en_US
dc.description.sponsorshipUnited States. Department of Energy (Grant DE-SC0009297)en_US
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/16M1082123en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleGoal-Oriented Optimal Approximations of Bayesian Linear Inverse Problemsen_US
dc.typeArticleen_US
dc.identifier.citationSpantini, Alessio et al. “Goal-Oriented Optimal Approximations of Bayesian Linear Inverse Problems.” SIAM Journal on Scientific Computing 39, 5 (January 2017): S167–S196 © 2017 Society for Industrial and Applied Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorSpantini, Alessio
dc.contributor.mitauthorWillcox, Karen E
dc.contributor.mitauthorMarzouk, Youssef M
dc.relation.journalSIAM Journal on Scientific Computingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-04T15:25:04Z
dspace.orderedauthorsSpantini, Alessio; Cui, Tiangang; Willcox, Karen; Tenorio, Luis; Marzouk, Youssefen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5527-408X
dc.identifier.orcidhttps://orcid.org/0000-0003-2156-9338
dc.identifier.orcidhttps://orcid.org/0000-0001-8242-3290
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record