Show simple item record

dc.contributor.authorLaw, Kody J.H.
dc.contributor.authorCui, Tiangang
dc.contributor.authorMarzouk, Youssef M
dc.date.accessioned2018-04-04T17:28:08Z
dc.date.available2018-04-04T17:28:08Z
dc.date.issued2015-10
dc.date.submitted2015-07
dc.identifier.issn0021-9991
dc.identifier.issn1090-2716
dc.identifier.urihttp://hdl.handle.net/1721.1/114545
dc.description.abstractMany Bayesian inference problems require exploring the posterior distribution of high-dimensional parameters that represent the discretization of an underlying function. This work introduces a family of Markov chain Monte Carlo (MCMC) samplers that can adapt to the particular structure of a posterior distribution over functions. Two distinct lines of research intersect in the methods developed here. First, we introduce a general class of operator-weighted proposal distributions that are well defined on function space, such that the performance of the resulting MCMC samplers is independent of the discretization of the function. Second, by exploiting local Hessian information and any associated low-dimensional structure in the change from prior to posterior distributions, we develop an inhomogeneous discretization scheme for the Langevin stochastic differential equation that yields operator-weighted proposals adapted to the non-Gaussian structure of the posterior. The resulting dimension-independent and likelihood-informed (DILI) MCMC samplers may be useful for a large class of high-dimensional problems where the target probability measure has a density with respect to a Gaussian reference measure. Two nonlinear inverse problems are used to demonstrate the efficiency of these DILI samplers: an elliptic PDE coefficient inverse problem and path reconstruction in a conditioned diffusion. Keywords: Markov chain Monte Carlo; Likelihood-informed subspace; Infinite-dimensional inverse problems; Langevin SDE; Conditioned diffusionen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.JCP.2015.10.008en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleDimension-independent likelihood-informed MCMCen_US
dc.typeArticleen_US
dc.identifier.citationCui, Tiangang et al. “Dimension-Independent Likelihood-Informed MCMC.” Journal of Computational Physics 304 (January 2016): 109–137 © 2015 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorCui, Tiangang
dc.contributor.mitauthorMarzouk, Youssef M
dc.relation.journalJournal of Computational Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-04T16:12:25Z
dspace.orderedauthorsCui, Tiangang; Law, Kody J.H.; Marzouk, Youssef M.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4840-8545
dc.identifier.orcidhttps://orcid.org/0000-0001-8242-3290
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record