MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

V[subscript OC] enhancement in polymer solar cells with isobenzofulvene–C[subscript 60] adducts

Author(s)
Han, Ggoch Ddeul; Maurano, Andrea; Weis, Jonathan Garrett; Bulovic, Vladimir; Swager, Timothy M
Thumbnail
DownloadORGELE-S-15-01108-posting.pdf (1.010Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We report the use of isobenzofulvene–C[subscript 60] adducts in bulk heterojunction organic solar cells, synthesized via the [4 + 2] cycloaddition of C[subscript 60] with an in situ generated isobenzofulvene intermediate. The LUMO energy levels of these adducts are 20–180 meV higher than that of PCBM ([6,6]-phenyl-C[subscript 61]-butyric acid methyl ester). This large increase of the LUMO level is attributed to cofacial π-orbital interactions between the fullerene surface and the isobenzofulvene π–system (aromatic ring and double bond). Raised LUMO levels of fullerenes, together with their desirably slow recombination dynamics, led to higher open-circuit voltages (V[subscript OC]) in bulk heterojunction polymer solar cells (up to 0.75 V for bisadducts) relative to cells tested in parallel using the well-known PCBM as the fullerene acceptor. In addition to enhanced V[subscript OC], the short-circuit current densities (J[subscriptSC]) were improved in the devices containing the epoxide analogs of the isobenzofulvene–C[subscript 60]. Notably the epoxide derivative of the monoadduct (IBF–Ep) exhibited ∼20% enhancement of power conversion efficiency (PCE) compared to reference P3HT:PCBM solar cells. A combination of optical and electronic methods was used to investigate the origin of the PCE enhancement observed with these new fullerene acceptors with particular attention to the increased V[subscript OC]s.
Date issued
2016-01
URI
http://hdl.handle.net/1721.1/114552
Department
Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Organic Electronics
Publisher
Elsevier
Citation
Han, Ggoch Ddeul, Andrea Maurano, Jonathan G. Weis, Vladimir Bulović, and Timothy M. Swager. “V[subscript OC] enhancement in polymer solar cells with isobenzofulvene–C[subscript 60] adducts.” Organic Electronics 31 (April 2016): 48–55 © 2016 Elsevier B.V.
Version: Author's final manuscript
ISSN
1566-1199

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.