Show simple item record

dc.contributor.authorLiu, Yang
dc.contributor.authorPark, Peter S.
dc.contributor.authorSong, Zhuo Qun
dc.date.accessioned2018-04-09T14:04:30Z
dc.date.available2018-04-09T14:04:30Z
dc.date.issued2017-12
dc.date.submitted2016-07
dc.identifier.issn2363-9555
dc.identifier.urihttp://hdl.handle.net/1721.1/114616
dc.description.abstractLet r ≥ 2 be an integer. We adapt the Maynard–Tao sieve to produce the asymptotically best-known bounded gaps between products of r distinct primes. Our result applies to positive-density subsets of the primes that satisfy certain equidistribution conditions. This improves on the work of Thorne and Sono.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1557960)en_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s40993-017-0089-3en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleBounded gaps between products of distinct primesen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Yang et al. "Bounded gaps between products of distinct primes." Research in Number Theory 3 (December 2017): 26 © The Author(s) 2017en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.contributor.mitauthorLiu, Yang
dc.relation.journalResearch in Number Theoryen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2017-12-01T04:54:07Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsLiu, Yang; Park, Peter S.; Song, Zhuo Qunen_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record