Show simple item record

dc.contributor.authorXie, Tian
dc.contributor.authorGrossman, Jeffrey C.
dc.date.accessioned2018-04-09T17:33:57Z
dc.date.available2018-04-09T17:33:57Z
dc.date.issued2018-04
dc.date.submitted2017-12
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.urihttp://hdl.handle.net/1721.1/114632
dc.description.abstractThe use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 10^{4} data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevLett.120.145301en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleCrystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Propertiesen_US
dc.typeArticleen_US
dc.identifier.citationXie, Tian and Jeffrey C. Grossman. "Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties." Physical Review Letters 120, 14 (April 2018): 145301 © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorXie, Tian
dc.contributor.mitauthorGrossman, Jeffrey C.
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-06T18:00:13Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsXie, Tian; Grossman, Jeffrey C.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0987-4666
dc.identifier.orcidhttps://orcid.org/0000-0003-1281-2359
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record