Show simple item record

dc.contributor.authorBarr, Bryan
dc.contributor.authorHammond, Giles
dc.contributor.authorHild, Stefan
dc.contributor.authorHough, James
dc.contributor.authorHuttner, Sabina
dc.contributor.authorRowan, Sheila
dc.contributor.authorSorazu, Borja
dc.contributor.authorCarbone, Ludovico
dc.contributor.authorFreise, Andreas
dc.contributor.authorMow-Lowry, Conor
dc.contributor.authorDooley, Katherine L.
dc.contributor.authorFulda, Paul
dc.contributor.authorGrote, Hartmut
dc.contributor.authorSigg, Daniel
dc.contributor.authorYu, Hang
dc.contributor.authorMartynov, Denis
dc.contributor.authorVitale, Salvatore
dc.contributor.authorEvans, Matthew J
dc.contributor.authorShoemaker, David H
dc.date.accessioned2018-04-09T18:22:38Z
dc.date.available2018-04-09T18:22:38Z
dc.date.issued2018-04
dc.date.submitted2018-02
dc.identifier.issn0031-9007
dc.identifier.issn1079-7114
dc.identifier.urihttp://hdl.handle.net/1721.1/114636
dc.description.abstractWe propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5–30 Hz low-frequency band, and we explore the upgrade’s astrophysical applications. We present a comprehensive study of the detector’s technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade’s implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z≃6 and would be sensitive to intermediate-mass black holes up to 2000  M_{⊙}. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3–5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r modes and the gravitational memory effects.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Grant NNX14AB40G)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevLett.120.141102en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleProspects for Detecting Gravitational Waves at 5 Hz with Ground-Based Detectorsen_US
dc.typeArticleen_US
dc.identifier.citationYu, Hang et al. "Prospects for Detecting Gravitational Waves at 5 Hz with Ground-Based Detectors." Physical Review Letters 120, 14 (April 2018): 141102 © 2018 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.departmentLIGO (Observatory : Massachusetts Institute of Technology)en_US
dc.contributor.departmentMIT Kavli Institute for Astrophysics and Space Researchen_US
dc.contributor.mitauthorYu, Hang
dc.contributor.mitauthorMartynov, Denis
dc.contributor.mitauthorVitale, Salvatore
dc.contributor.mitauthorEvans, Matthew J
dc.contributor.mitauthorShoemaker, David H
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-04-06T18:00:10Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsYu, Hang; Martynov, Denis; Vitale, Salvatore; Evans, Matthew; Shoemaker, David; Barr, Bryan; Hammond, Giles; Hild, Stefan; Hough, James; Huttner, Sabina; Rowan, Sheila; Sorazu, Borja; Carbone, Ludovico; Freise, Andreas; Mow-Lowry, Conor; Dooley, Katherine L.; Fulda, Paul; Grote, Hartmut; Sigg, Danielen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6011-6190
dc.identifier.orcidhttps://orcid.org/0000-0003-2700-0767
dc.identifier.orcidhttps://orcid.org/0000-0001-8459-4499
dc.identifier.orcidhttps://orcid.org/0000-0002-4147-2560
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record