Show simple item record

dc.contributor.authorDuvallet, Felix
dc.contributor.authorOh, Jean
dc.contributor.authorStentz, Anthony
dc.contributor.authorWalter, Matthew Robert
dc.contributor.authorHoward, Thomas M.
dc.contributor.authorHemachandra, Sachithra Madhawa
dc.contributor.authorTeller, Seth
dc.contributor.authorRoy, Nicholas
dc.date.accessioned2018-04-09T18:44:05Z
dc.date.available2018-04-09T18:44:05Z
dc.date.issued2015-11
dc.identifier.isbn978-3-319-23777-0
dc.identifier.isbn978-3-319-23778-7
dc.identifier.issn1610-7438
dc.identifier.issn1610-742X
dc.identifier.urihttp://hdl.handle.net/1721.1/114638
dc.description.abstractNatural language provides a flexible, intuitive way for people to command robots, which is becoming increasingly important as robots transition to working alongside people in our homes and workplaces. To follow instructions in unknown environments, robots will be expected to reason about parts of the environments that were described in the instruction, but that the robot has no direct knowledge about. However, most existing approaches to natural language understanding require that the robot’s environment be known a priori. This paper proposes a probabilistic framework that enables robots to follow commands given in natural language, without any prior knowledge of the environment. The novelty lies in exploiting environment information implicit in the instruction, thereby treating language as a type of sensor that is used to formulate a prior distribution over the unknown parts of the environment. The algorithm then uses this learned distribution to infer a sequence of actions that are most consistent with the command, updating our belief as we gather Keywords Natural Language; Mobile Robot; Parse Tree; World Model; Behavior Inferenceen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-23778-7_25en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleInferring Maps and Behaviors from Natural Language Instructionsen_US
dc.typeArticleen_US
dc.identifier.citationDuvallet, Felix, Matthew R. Walter, Thomas Howard, Sachithra Hemachandra, Jean Oh, Seth Teller, Nicholas Roy, and Anthony Stentz. “Inferring Maps and Behaviors from Natural Language Instructions.” Experimental Robotics (November 2015): 373–388 © 2016 Springer International Publishing Switzerlanden_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorWalter, Matthew Robert
dc.contributor.mitauthorHoward, Thomas M.
dc.contributor.mitauthorHemachandra, Sachithra Madhawa
dc.contributor.mitauthorTeller, Seth
dc.contributor.mitauthorRoy, Nicholas
dc.relation.journalExperimental Roboticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-04-09T18:31:43Z
dspace.orderedauthorsDuvallet, Felix; Walter, Matthew R.; Howard, Thomas; Hemachandra, Sachithra; Oh, Jean; Teller, Seth; Roy, Nicholas; Stentz, Anthonyen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8293-0492
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record