MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Emergent supersymmetry in local equilibrium systems

Author(s)
Gao, Ping; Liu, Hong
Thumbnail
Download13130_2018_Article_7406.pdf (765.0Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Many physical processes we observe in nature involve variations of macroscopic quantities over spatial and temporal scales much larger than microscopic molecular collision scales and can be considered as in local thermal equilibrium. In this paper we show that any classical statistical system in local thermal equilibrium has an emergent supersymmetry at low energies. We use the framework of non-equilibrium effective field theory for quantum many-body systems defined on a closed time path contour and consider its classical limit. Unitarity of time evolution requires introducing anti-commuting degrees of freedom and BRST symmetry which survive in the classical limit. The local equilibrium is realized through a Z2 dynamical KMS symmetry. We show that supersymmetry is equivalent to the combination of BRST and a specific consequence of the dynamical KMS symmetry, to which we refer as the special dynamical KMS condition. In particular, we prove a theorem stating that a system satisfying the special dynamical KMS condition is always supersymmetrizable. We discuss a number of examples explicitly, including model A for dynamical critical phenomena, a hydrodynamic theory of nonlinear diffusion, and fluctuating hydrodynamics for relativistic charged fluids.
Date issued
2018-01
URI
http://hdl.handle.net/1721.1/114659
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics
Journal
Journal of High Energy Physics
Publisher
Springer International Publishing AG
Citation
Gao, Ping and Liu, Hong. "Emergent supersymmetry in local equilibrium systems." Journal of High Energy Physics 2018 (January 2018): 40 © 2018 The Author(s)
Version: Final published version
ISSN
1029-8479

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.