Show simple item record

dc.contributor.authorLehmann, Sune
dc.contributor.authorCuttone, Andrea
dc.contributor.authorGonzalez, Marta C.
dc.date.accessioned2018-04-12T14:58:16Z
dc.date.available2018-04-12T14:58:16Z
dc.date.issued2018-01
dc.date.submitted2017-08
dc.identifier.issn2193-1127
dc.identifier.urihttp://hdl.handle.net/1721.1/114665
dc.description.abstractPredictive models for human mobility have important applications in many fields including traffic control, ubiquitous computing, and contextual advertisement. The predictive performance of models in literature varies quite broadly, from over 90% to under 40%. In this work we study which underlying factors - in terms of modeling approaches and spatio-temporal characteristics of the data sources - have resulted in this remarkably broad span of performance reported in the literature. Specifically we investigate which factors influence the accuracy of next-place prediction, using a high-precision location dataset of more than 400 users observed for periods between 3 months and one year. We show that it is much easier to achieve high accuracy when predicting the time-bin location than when predicting the next place. Moreover, we demonstrate how the temporal and spatial resolution of the data have strong influence on the accuracy of prediction. Finally we reveal that the exploration of new locations is an important factor in human mobility, and we measure that on average 20-25% of transitions are to new places, and approx. 70% of locations are visited only once. We discuss how these mechanisms are important factors limiting our ability to predict human mobility. Keywords: human mobility; next-location prediction; predictabilityen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1140/epjds/s13688-017-0129-1en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleUnderstanding predictability and exploration in human mobilityen_US
dc.typeArticleen_US
dc.identifier.citationCuttone, Andrea et al. "Understanding predictability and exploration in human mobility." EPJ Data Science 2018, 7 (January 2018): 2 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.mitauthorCuttone, Andrea
dc.contributor.mitauthorGonzalez, Marta C.
dc.relation.journalEPJ Data Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-01-12T05:27:21Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsCuttone, Andrea; Lehmann, Sune; González, Marta C.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8482-0318
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record