Subgrid-scale modeling and implicit numerical dissipation in DG-based Large-Eddy Simulation
Author(s)
Fernandez del Campo, Pablo; Nguyen, Ngoc Cuong; Peraire, Jaime
DownloadSubgrid-scale modeling and implicit numerical dissipation in DG-based Large-Eddy Simulation.pdf (5.026Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation (LES) have emerged as a promising approach to solve complex turbulent flows. However, despite the significant research investment, the relation between the discretization scheme, the subgrid-scale (SGS) model and the resulting LES solver remains unclear. This paper aims to shed some light on this matter. To that end, we investigate the role of the Riemann solver, the SGS model, the time resolution, and the accuracy order in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence, wall-bounded turbulence, and turbulence decay. The transitional flow over the Eppler 387 wing, the TaylorGreen
vortex problem and the turbulent channel flow are considered to this end. The focus is placed on post-processing the LES results and providing with a rationale for the performance of the various approaches.
Date issued
2017-06Department
Massachusetts Institute of Technology. Department of Aeronautics and AstronauticsJournal
23rd AIAA Computational Fluid Dynamics Conference
Publisher
American Institute of Aeronautics and Astronautics
Citation
Fernandez, Pablo, et al. "Subgrid-Scale Modeling and Implicit Numerical Dissipation in DG-Based Large-Eddy Simulation." 23rd AIAA Computational Fluid Dynamics Conference, 5-9 June, 2017, Denver, Colorado, American Institute of Aeronautics and Astronautics, 2017.
Version: Author's final manuscript
ISBN
978-1-62410-506-7