MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Motion planning with diffusion maps

Author(s)
Chen, Yu Fan; Liu, Shih-Yuan; Liu, Miao; Miller, Justin Lee; How, Jonathan P
Thumbnail
DownloadIROS16.pdf (2.726Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Many robotic applications require repeated, on-demand motion planning in mapped environments. In addition, the presence of other dynamic agents, such as people, often induces frequent, dynamic changes in the environment. Having a potential function that encodes pairwise cost-to-go can be useful for improving the computational speed of finding feasible paths, and for guiding local searches around dynamic obstacles. However, since storing pairwise potential can be impractical given the O(|V|²) memory requirement, existing work often needs to compute a potential function for each query to a new goal, which would require a substantial online computation. This work addresses the problem by using diffusion maps, a machine learning algorithm, to learn the map's geometry and develop a memory-efficient parametrization (O(|V|)) of pairwise potentials. Specially, each state in the map is transformed to a diffusion coordinate, in which pairwise Euclidean distance is shown to be a meaningful similarity metric. We develop diffusion-based motion planning algorithms and, through extensive numerical evaluation, show that the proposed algorithms find feasible paths of similar quality with orders of magnitude improvement in computational speed compared with single-query methods. The proposed algorithms are implemented on hardware to enable real-time autonomous navigation in an indoor environment with frequent interactions with pedestrians.
Date issued
2016-10
URI
http://hdl.handle.net/1721.1/114715
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Chen, Yu Fan, Shih-Yuan Liu, Miao Liu, Justin Miller, and Jonathan P. How. “Motion Planning with Diffusion Maps.” 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2016, Daejeon, South Korea, Institute of Electrical and Electronics Engineers (IEEE), 2016.
Version: Author's final manuscript
ISBN
978-1-5090-3762-9
978-1-5090-3761-2
978-1-5090-3763-6
ISSN
2153-0866

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.