Motion planning with diffusion maps
Author(s)
Chen, Yu Fan; Liu, Shih-Yuan; Liu, Miao; Miller, Justin Lee; How, Jonathan P
DownloadIROS16.pdf (2.726Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Many robotic applications require repeated, on-demand motion planning in mapped environments. In addition, the presence of other dynamic agents, such as people, often induces frequent, dynamic changes in the environment. Having a potential function that encodes pairwise cost-to-go can be useful for improving the computational speed of finding feasible paths, and for guiding local searches around dynamic obstacles. However, since storing pairwise potential can be impractical given the O(|V|²) memory requirement, existing work often needs to compute a potential function for each query to a new goal, which would require a substantial online computation. This work addresses the problem by using diffusion maps, a machine learning algorithm, to learn the map's geometry and develop a memory-efficient parametrization (O(|V|)) of pairwise potentials. Specially, each state in the map is transformed to a diffusion coordinate, in which pairwise Euclidean distance is shown to be a meaningful similarity metric. We develop diffusion-based motion planning algorithms and, through extensive numerical evaluation, show that the proposed algorithms find feasible paths of similar quality with orders of magnitude improvement in computational speed compared with single-query methods. The proposed algorithms are implemented on hardware to enable real-time autonomous navigation in an indoor environment with frequent interactions with pedestrians.
Date issued
2016-10Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Laboratory for Information and Decision SystemsJournal
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Chen, Yu Fan, Shih-Yuan Liu, Miao Liu, Justin Miller, and Jonathan P. How. “Motion Planning with Diffusion Maps.” 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2016, Daejeon, South Korea, Institute of Electrical and Electronics Engineers (IEEE), 2016.
Version: Author's final manuscript
ISBN
978-1-5090-3762-9
978-1-5090-3761-2
978-1-5090-3763-6
ISSN
2153-0866